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Abstract—Subgraph similarity search is used in graph databases to retrieve graphs whose subgraphs are similar to a given query

graph. It has been proven successful in a wide range of applications including bioinformatics and chem-informatics, etc. Due to the cost

of providing efficient similarity search services on ever-increasing graph data, database outsourcing is apparently an appealing solution

to database owners. Unfortunately, query service providers may be untrusted or compromised by attacks. To our knowledge, no studies

have been carried out on the authentication of the search. In this paper, we propose authentication techniques that follow the popular

filtering-and-verification framework. We propose an authentication-friendly metric index called GMTree. Specifically, we transform the

similarity search into a search in a graph metric space and derive small verification objects (VOs) to-be-transmitted to query clients. To

further optimize GMTree, we propose a sampling-based pivot selection method and an authenticated version of MCS computation. Our

comprehensive experiments verified the effectiveness and efficiency of our proposed techniques.

Index Terms—Subgraph similarity search, query authentication, outsourced database.

✦

1 INTRODUCTION

Graphs have been used widely to model complex data in
many emerging applications, including proteins in biology,
compounds in chemistry, attributed graphs in computer vi-
sion, ecology and web topology. In these real applications,
subgraph similarity search (or simply similarity search) is a
query frequently used as there may not be exact match for
a user-specified search (e.g., [1]–[9]). Similarity search can
be formally described as follows. Given a query graph q, a

graph database D and a threshold (radius) t, retrieve graphs

in D whose similarity distances from q are not greater than

t. For example, in chemistry, it is well-known that chemical
structures discovered by the popular virtual screening method
may contain laboratory errors. A compound being searched
for may not match any compounds in the database. Hence,
practical databases (e.g., PubChem [10]) often return graphs
that are similar to the query.

Similarity search is known to be an NP-hard problem. The
owners of graph databases may lack the IT resources and
expertises to provide efficient searches of their databases. For
example, we issued a small query for a benzene structure to
the prototype of a recent chemical database [11] and the query
took 7.8 minutes. Such a performance may not be ideal for
many applications. Further, graph data is growing explosively
in volume. For instance, recent reports [10] indicate that from
2006 to 2012, PubChem’s compound data increased from 57G
bytes to 141G bytes. It would be inefficient to process such a
large amount of data with a commodity machine.

For the reasons mentioned above, graph database outsourc-
ing is appealing to database owners. Specifically, voluminous
data is delegated to a powerful third-party service provider
(SP). The client may submit queries to the SP as if he/she
is accessing a utility and the SP provides query processing
services on the data owner’s behalf. Data outsourcing has been
adopted in many industry sectors. For instance, in drug engi-
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Fig. 1. An example of an outsourced graph database

neering, many commercial SPs [12]–[15] support outsourcing
of pharma databases. Drug laboratories may then focus on the
curation of their data.

Unfortunately, the service provider may be untrusted and/or
compromised by attacks and clients may consequently receive
tampered results. For instance, Fig. 1 shows an outsourced
molecular graph database D, a query molecule q and a distance
threshold t 0.25. (The edge labels are omitted for brevity
of presentation.) Assume that G4, G6 and G7 are answers
which should be returned as the query result. The service
provider may deliberately return incorrect results (e.g., G3),
distort t to 0.1, or return partial results (e.g., only G4).
These significantly limit the practicality of graph database
outsourcing. An authentication mechanism is thus necessary.

The majority of works on subgraph similarity search adopts
a filtering-and-verification framework (e.g., [1]–[6], [8], [9]),
which consists of two key phases. First, in the filtering phase,
indexes are proposed to prune (or filter) the data graphs that
are certainly not the answer. The remaining graphs form a
candidate set (a superset of answers). Second, in the veri-

fication phase, each candidate is checked by computing its
distance from the query to verify if it is an answer. Despite the
popularity of the framework, to the best of our knowledge, its
authentication has not yet been studied and this paper takes the

first step toward an authenticated framework for the search.

To facilitate the technical discussions, we briefly list the
main steps of query authentication [16]: the data owner
publishes its database, index and signature to an SP . The



2

SP processes queries from a client and returns to the client
both the query result and a verification object (VO) which
often encodes query processing traces such as index traversals.
Using the query result and the VO, the client constructs the
digest of the database/index and compares it with the signature
of the data owner to authenticate the query result.

As the filtering-and-verification framework is not specially
designed for query authentication, we note that a naı̈ve ap-
plication of existing query authentication techniques leads to
at least three problems. First, no previous index specifically
considered whether the candidate graphs were located together
in the graph database, which directly affects the VO needed.
For instance, candidate and non-candidate graphs may be
alternately stored in the database; and in this scenario, each
candidate graph needs an item in the VO to authenticate that
no candidate has been missed. As the number of candidate
graphs for similarity search can be large, the VO for au-
thenticating them can also be large. Second, one performance
bottleneck at the client side is the distance computation on
large candidate graphs, since the distance computation time
is exponential to the graph size. Unfortunately, most existing
approaches index similarity search by features or subgraphs
(e.g., [1], [2], [4], [5], [8], [9]). The larger the graph is, the
more features/subgraphs are there for indexing. Thus, large
graphs are often included in candidate graphs. Third, clients
are required to perform the costly subgraph similarity compu-
tation numerous times in order to authenticate the processing
traces at the SP . Since such computation has already been
done once at the SP , it is inefficient for the client to redo it
from scratch.

In this paper, we propose an authentication-friendly metric-
based index, called Graph Metric Tree (GMTree), to address
the aforementioned technical challenges. Its novelties mainly
rely on the authentication techniques associated with GMTree.
Specifically, for the first problem, we transform the subgraph
similarity search into a search of a graph metric space and
exploit the triangle inequality. Traditional metric indexes (such
as [17]–[19]) can then be adapted to index graphs. GMTree is
designed based on vp-tree [19], while other metric indexes
can be adopted with minor modifications. As candidate graphs
are often located together, our GMTree needs a notably smaller
VO than a baseline derived from a previous work Grafil
(denoted as Grafil∗) as verified by our experiments. Moreover,
subgraphs of data graphs can be pivots of GMTree. In contrast,
the pivots of previous metric indexes were atomic data. We
propose a pivot selection technique that exploits this property.
Our experiments show that our pivot selection method reduces
the query time and VO size by a factor of about 6.5 and
2, respectively. For the second problem, we derive an upper
bound for pruning large non-answer graphs. We exploit the
triangular inequality of a metric function and there is often
a large graph distance between large non-answers and small
queries. In particular, our experiments show that the largest
5% of GMTree’s candidate graphs are 1.5 times smaller than
those of Grafil∗ and the client’s time spent on authenticating
candidate graphs is thus reduced by up to 35%. For the third
problem, we propose an authenticated version of the state-
of-the-art MCS computation technique [20]. When the SP

determines the MCSs between the query and indexed graphs,
it records some hints in the VO. The correctness of the hints
can be authenticated by a scan on the hints. This significantly
reduces the authentication time at the client. Our experiment
shows that the VO overhead of our authenticated MCS com-
putation is about 10K bytes but it reduces the authentication
time at the client by about 50%.

The main contributions can be summarized as follows.

• We cast the subgraph similarity search into a similarity
search in a graph metric space.

• We adopt a metric index to form GMTree to support
efficient authentication. We propose the VO definition on
GMTree, the VO construction and its authentication.

• We propose a sampling-based pivot selection method to
optimize the GMTree construction.

• We develop an authenticated subgraph similarity com-
putation method that significantly reduces the clients’
authentication time.

• We conduct an extensive experimental evaluation of pro-
posed techniques. Our experiments on a real dataset AIDS

show that the authentication time of GMTree makes up
less than 20% of its query time. The VO generated from
GMTree is well controlled under 30K bytes, less than 3%
of an authentication method extended from Grafil with
basic authentication techniques.

Organization. The rest of the paper is organized as follows:
Sec. 2 discusses the related work. Sec. 3 presents the back-
ground and problem statement. The metric based pruning is
studied in Sec. 4. We present the GMTree index in Sec. 5
and its authentication techniques in Sec. 6. Sec. 7 details
authenticated MCS computation and pivot selection techniques.
Our experiments are presented in Sec. 8. Sec. 9 concludes the
paper. All proofs are presented in the appendix.

2 RELATED WORK

There have been many studies on authentication of various
kinds of queries [21]–[26] but these queries are significantly
different from subgraph similarity search. Despite recent inter-
est in graph databases, the related work on its authentication
is very limited. Yiu et al. [27] propose to authenticate shortest
path queries on road networks. Goodrich et al. [28] study
the authentication of path and connectivity queries on general
graphs. Subgraph similarity search is different and more com-
putationally costly than these queries. Moreover, the ordering
of data objects in road networks can be precomputed offline
by network-based distance, for example. Such an ordering is
absent in graph data. Kundu and Bertino [29], [30] verify
whether a given subgraph/subtree is in fact a subgraph/subtree
of a given large data graph/tree without leakage of structural
information. However, we study a large graph database instead
of one large graph/tree. Martel et al. [31] propose a Search
DAG (Directed Acyclic Graph) which is a generic model
for authenticating a broad class of data structures. However,
subgraph similarity search is more than a DAG search.

Another related topic is subgraph similarity search. He
et al. [6] propose a CTree to index the hierarchical graph
closure but CTree’s heuristic method only supports approxi-
mate similarity search. Williams et al. [5] and Tian et al. [8]
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propose graph decomposition methods to enumerate all unique
and k-size subgraphs of data graphs, respectively; if adopted,
they may lead to large VOs. Yan et al. [1] propose a MCS-
based similarity search method, which prunes non-candidate
graphs by the count of structural features. Mongiovi et al.
[9] extends it by incorporating with the identity of features
for more filtering power. Jiang et al. [32] and Shang et al.
[2] address the practical interests of connected subgraphs.
Recently, Yuan et al. [4] study the MCS-based similarity search
on probability graphs. Their similarity measures are based on
maximum common edge subgraph (MCES). However, they are
not a metric function. Zhu et al. [3] propose a MCES-based
similarity metric measure. Their similarity value is dominated
by the answer graph size when the answer graph is much

larger than the query graph. In contrast, our similarity measure
is defined to be relative to the query graph size. Further,
we note that recent works adopt the maximum common
induced subgraph based similarly, especially for biological and
chemical applications [33]. There are some existing works on
large graphs. Tian et al. [34] propose a neighborhood-based
index, but they only support approximate search. Khan et al.
[35] propose a novel neighborhood-based similarity measure to
reduce isomorphism testing. However, they require all nodes of
a query graph matched to a data graph. The similarity measure
is not a metric either. There is another stream of works (e.g.,
[6], [36]) on exact subgraph queries following the filtering-
and-verification framework but there has been no work on
its authentication. Moreover, similarity search is more flexible
than exact queries.

The MCS computation problem is mainly studied for the
maximum common induced subgraph (MCIS), as reported in
[37]–[39]. Induced subgraphs are also widely used in recent
subgraph similarity search works (e.g., [2], [5], [34], [40]). We
adopt MCIS for its metric properties [41].

For similarity search in metric spaces, several search trees
are proposed to index the metric space (e.g., [19] and [17]).
However, these indexes are designed for neither indexing
graphs nor their authentication. As noted in Sec. 1, several
technical challenges must be addressed when they are adopted.
Other works (e.g., [42]) propose to cast metric spaces into
low dimensional vector spaces and conduct similarity search
there. However, it is not clear how graphs can be represented
in vectors for similarity search and authentication.

3 BACKGROUND AND PROBLEM STATEMENT

This section first provides some background and problem
statement and then presents the overview of our approach.

3.1 Backgrounds

3.1.1 Background for Querying Graphs

In this paper, we study undirected labeled data graphs, or sim-
ply graphs in the subsequent discussions. A graph is denoted
as G = (V,E,Σ,λ), where V is a set of nodes, E : V × V
is a set of edges, Σ is a set of labels and λ is a function
mapping a vertex or edge to a label. The size of G is defined
as the number of vertices in G, denoted as |G|. Following a
popular stream of works, we consider a a graph database as

e

a b

d c

e

a b

c

G7 q

e

a b

d c

e

a b

c

G7 q

(b) Common induced subgraph(a) Common subgraph

S = {a, b, c, e} S′ = {a, b, c} S′′ = {a, c, e}

Fig. 2. Common subgraph vs common induced subgraph

a large collection of graphs having hundreds of nodes, which

are common in chemical and biological databases.

Isomorphism and common induced subgraph. Two graphs
G and G′ are isomorphic if there is a bijection f between
V and V ′ such that for every vertex u ∈ V , f(u) ∈ V ′

and λ(u) = λ′(f(u)), and for every edge (u1, u2) ∈ E,
(f(u1), f(u2)) ∈ E′ and λ(u1, u2) = λ′(f(u1), f(u2)). A
common (induced) subgraph between two graphs G(V,E)
and G′(V ′, E′) is an (induced) subgraph S of G that is
isomorphic to an (induced) subgraph S′ of G′. In general, the
common subgraph and the common induced subgraph could
be different. In this paper, the maximum common induced

subgraph is referred to as the MCS between them, denoted as
mcs(G,G′). Note that mcs(G,G′) is not necessarily unique
for two given graphs G and G′. Moreover, mcs(G,G′) can
be connected or disconnected.

Example 3.1: Consider the graph G7 and the query q in
our running example Fig. 1. Fig. 2(a) presents one common
subgraph between G7 and q, S={a, b, c, e} (highlighted by
bold circles and lines). However, S is not an induced common
subgraph because S is not an induced subgraph of q as (e, b) ∈
q. In comparison, two common induced subgraphs, connected
S′={a, b, c} and disconnected S′′={a, c, e} are presented in
Fig. 2(b) (highlighted by bold circles and lines, and gray
filling, respectively). Since G7 and q have no common induced
subgraph larger than 3, S′ and S′′ are two MCSs of them.

Graph similarity. There have been various similarity defini-
tions of graphs in the literature. Among the existing defi-
nitions, only MCS-based graph similarity measure is a metric
distance function. Specifically, the graph distance between a
query graph q and a data graph G is defined as follows:

Definition 3.1: Given a query graph q and a data graph G,
the graph distance between q and G is

d(q,G) = 1−
|mcs(q,G)|
max{|q|, |G|}

. (1)

This graph distance is a metric function [41], which satisfies
the following properties, for any two graphs G and G′,

• d(G,G′) ≥ 0, (positiveness)

• d(G,G′) = 0, iff G and G′ are isomorphic
• d(G,G′) = d(G′, G) (symmetry)

• d(G,G′) + d(G′, G′′) ≥ d(G,G′′) (triangle inequality)

Subgraph similarity. Graph distance is related to the ratio
between |mcs(q,G)| and the larger one of |q| and |G|. How-
ever, |G| is often much larger than |q|. In this case, d(q,G)
produces a number close to 1, even when q itself is already
a subgraph of G. Hence, users may often be more interested
in the relative size of mcs(q,G) with respect to q, e.g., [1],
[2]. Computing the relative size of mcs(q,G) with respect
to q is equivalent to comparing the similarity between q and
G’s subgraphs whose sizes are not larger than q. This is often
referred to as subgraph distance, presented in Definition 3.2 .



4

filtering verification

index
mcs(q, Gi)db

q, t cand.set
{...Gi...}⊂db

result
q, t

similarity
test

set

Fig. 3. Sketch of the filtering-and-verification framework

Definition 3.2: The subgraph distance between a query graph
q and a data graph G is

ds(q,G) = 1−
|mcs(q,G)|

|q|
. (2)

The number of missing vertices of q, σ = |q|− |mcs(q,G)|,
can be readily derived from subgraph distance of q and G.
Unfortunately, subgraph distance is not a metric function.

Example 3.2: We use Fig. 2(b) to show the difference between
the graph distance and the subgraph distance. In Fig. 2(b),
because |mcs(q,G7)| = 3, so d(q,G7) = 1− 3/5 = 2/5 and
ds(q,G7) = 1− 3/4 = 1/4.

Definition 3.3: (Subgraph Similarity Search Problem). Given
a graph database D = {G1, G2, ..., Gn}, a query graph q and
a threshold t, the subgraph similarity search problem is to
retrieve all the graphs Gi ∈ D, such that ds(q,Gi) ≤ t.

3.1.2 Background for Query Authentication

One-way hash function. A one-way hash function, denoted as
h(·), is easy to determine a hash value h(m) from a given pre-
image m. It is hard to invert a given hash value of a random
pre-image. Examples of such functions are MD5 and SHA. In
this paper, we often use the term digest to refer to hash value.

Public-key digital signature scheme. The scheme involves
a public key and a private key. Only the data signer has a
private key and can generate digital signatures of messages.
The public key is known to everyone and the public may use
it to verify the integrity of the signatures. For instance, RSA is
a popular public-key digital signature scheme.

Merkle Hash Tree. The seminal work of Merkle Hash Tree
(MHT) [43] has been adopted in many authentication works.
MHT is a binary search tree and hash values are associated to
its nodes. A leaf node ℓ contains data value dv and its hash
h(dv) is associated with ℓ. For an internal node, MHT associates
the hash, denoted as h(h1||h2), of the hash of its children h1

and h2, where “||” denotes concatenation. A data owner signs
the hash of the root of MHT. In a nutshell, given a range query
[a, b], the query service provider transmits to clients (i) the
answers in [a, b] and (ii) the hash values of the index nodes at
the “boundary” of the search of [a, b] of MHT. The answers are
complete only if the hash of the root computed by the client
agrees with the signature provided by the data owner.

3.2 Problem Formulation

System Model. We assume the current state-of-the-art system
model of database outsourcing [16]. The system model com-
prises three parties: the data owner DO, the service provider

SP and the client.

The DO maintains a database D. To support subgraph
similarity search on D, the DO or the SP builds an index

T of D. The DO signs the root of T , and outsources D, T
and the signature to the SP .

The SP answers queries of a client on DO’s behalf and
returns the result set RS back to the client. Since the SP
may not be trusted, the SP is required to return the results
RS together with their verification objects VOs.

pi pj

Dpi

r1−d(proot, q)>t
pruned as

Hv
hash ( )

hash( )
Hb

Cq = Dpi ∪ ..Dpj

answer non-answer
Rq = {..Gi..} Rq = Cq −Rq

e.g.

mcs computation

filtering verificationService

Client

authen-

Provider (SP)

1 3

VOcand = (M,N)VOindex = (Hv , Hb, sroot)

query threshold
q

sroot?

Rq

t

6

pl pk

Dpj Dpl Dpk

r1

r2

proot

. . . .

DFS

cand. set

∪Dpl ∪ ..Dpk

GMTree T M = {..mi..}

Rq?

Rq?

N = {JB1
,

. . .

B1 B2

mxm matching JB
min v. cover V CB

tication

. .

Gi
q

Rq

mi

mapping m

V CB1
,

...}

Data Owner

D
pivot
select.

srootT
D, T

public key

similarity
threshold t

4

5

2

sign

DO

Fig. 4. An overview of our authentication method

The client uses RS and VO to synthesize the digest of the
root of T . By using the public key of DO, the client verifies
whether the digest agrees with the signature provided by DO.
In addition, the clients are required to verify the following.

(i) Soundness: for ∀G ∈ RS , G is an answer and G ∈ D;
(ii) Completeness: for ∀G ̸∈ RS , G is not an answer.

Threat Model. In our model, the SP is not always trustable.
It may be a potential adversary or subverted by attackers. In
either case, the SP may alter the data or the index, tamper
with the similarity threshold, return partial answers, or abort
the computation. We consider an authentication framework is
secure if attacking such a framework is as hard as inverting
a one-way hash function or breaking the public-key digital
signature scheme.
Problem Statement. Given the above system and thread

models, we seek an efficient authentication mechanism where

the client can issue a subgraph similarity search and verify

the soundness and completeness of the results returned by a

query service provider.

3.3 Query Paradigm and Overview of Our Method

A popular subgraph similarity search paradigm is the filtering-

and-verification framework [1]–[6], [8], [9]. As an example,
Fig. 3 shows an overview of query processing of Grafil [1].
The query q and distance threshold t are first processed with
the database in the filtering phase. Grafil filters non-answer
graphs by its index and obtains a candidate set (i.e., a superset
of answers). In the verification phase, it computes the subgraph
distance to q for each candidate graph. The candidates whose
distances to q do not exceed t are query answers.

We design our authenticated subgraph similarity search
technique by following the well-received filtering-and-
verification framework. Fig. 4 gives an overview of our
authenticated subgraph similarity search techniques. 1⃝ The
data owner DO indexes the graph database D with the GMTree
T (to be detailed in Sec. 5). The DO signs T and passes
the database D and the index T to the service provider SP
together with the signature sroot. 2⃝ The client issues a query
graph q with a distance threshold t to the SP . 3⃝ In the
filtering phase, the SP performs a traversal on the GMTree.
Subtrees that do not contain any answers are pruned by using
the condition derived from graph distance. The data graphs that
are indexed by the remaining subtrees form the candidate set
Cq . 4⃝ For the sake of authentication, the SP introduces the
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visited nodes into Hv and puts the digests for pruned subtrees
in Hb where Hv , Hb and T ’s signature sroot form the VO for

the index denoted as VOindex. 5⃝ In the verification phase, for
each G ∈ Cq , the SP applies the authenticated MCS method to
compute ds(q,G). If ds(q,G) ≤ t, G is an answer and the SP
stores the mapping of mcs(q,G) in a list M ; Otherwise, G is
not an answer and the SP adds the structures for computing
MCS at the client into a list N . M and N comprise the VO for

the candidates denoted as VOcand. 6⃝ The query result RS
and VO are returned and the client performs the authentication
using the VOindex and the VOcand.

4 METRIC BASED FILTERING

Among the studies that follow the filtering-and-verification
framework, in this paper, we adopt the metric-based filtering
approach as the metric properties can be exploited to address
the authentication of subgraph similarity search.
Lemma 4.1: Let q, G1 and G2 denote the query graph and

two data graphs, respectively. Given a similarity threshold t,
if 1− |mcs(G1,G2)|

|G1|
− d(q,G1) > t, then ds(q,G2) > t.

Lemma 4.1 states that subgraph similarity between a graph
and a query can be expressed in terms of graph similarity and

1 − |mcs(G1,G2)|
|G1|

. However, 1 − |mcs(G1,G2)|
|G1|

is not a metric
function either. We address this by introducing a notion of
augmented graphs.

Definition 4.1: An augmented graph G∗
1 with respect to G2

is defined as follows:

• G∗
1 = G1 if |G1| ≥ |G2|;

• Otherwise, G∗
1 = G1 ∪ A, where A is an augmented

subgraph having nodes and edges with labels never
occurred in G2 and possible queries, until |G∗

1| = |G2|.
Example 4.1: Consider the graphs G1, G2 and G3 in Fig. 1.
Fig. 5(a) shows the augmented graph G∗

1 of G1 w. r. t. G2,
where G∗

1=G1 as |G1|>|G2|. Fig. 5(b) shows the augmented
graph G∗

1 of G1 w. r. t. G3, where G∗
1=G1∪A and A is an

augmented subgraph of two nodes, denoted by the dashed
circles and lines.

We can establish our pruning condition Theorem 4.2 by
applying Lemma 4.1.

Theorem 4.2: Given a query q, an augmented graph G∗
1 and

a graph G2, if d(G∗
1, G2)− d(q,G∗

1) > t, then ds(q,G2) > t.

We remark that the augmented graph G∗
1 is virtual, which

does not need to be materialized in indexing, i.e., original
graph G1 can still be used. To support the pruning condition
of ds(q,G2) by Theorem 4.2, d(q,G∗

1) and d(G∗
1, G2) are

needed. Regarding d(q,G∗
1), we store |G∗

1| in index, which
can be easily computed by Definition 4.1 without material-
izing G∗

1. Since mcs(G1, q) = mcs(G∗
1, q), we can compute

d(q,G∗
1) = 1− |mcs(G1,q)|

max(|q|,|G∗
1 |)

by computing mcs(G1, q) on-the-

fly. Regarding d(G∗
1, G2), it could be indexed in our index.

Since we have transformed the similarity search into a
search in graph metric space (U , d), where U denotes the graph

database and d is the graph distance defined in Definition 3.1,
one may attempt to directly adopt the traditional metric index
to index the graph metric space. For example, vp-tree [19]
partitions the metric space by using pivots with certain radii
(akin to the MBRs of the RTree). An internal node of vp-
tree contains a pivot p with a radius rp. The pivot divides
(U , d) into two subspaces: (i) the subspace covered by the
pivot Up = {O ∈ U | d(O, p) ≤ rp}; and (ii) the remaining
subspace Up = {O ∈ U | d(O, p) > rp}. The subspaces
are recursively partitioned and indexed with subtrees. Pivots
can be simply selected from data graphs. This is regarded as
the baseline method and will be compared in our experiments.

5 GRAPH METRIC TREE

As motivated in Sec. 1, existing techniques on similarity search
are not designed for authentication and may encounter several
problems when adopted. In this section, we propose an index
called Graph Metric Tree (GMTree), which forms the basis of
our authentication algorithm. This section focuses on similarity
search and the details for authentication are presented in Sec 6.

5.1 GMTree Structure

GMTree is designed based on a variant of vp-tree [44],
where a metric space is partitioned into a collection of non-
overlapping “circular” subspaces with the same center.
Definition 5.1: Given a graph metric space (U , d), where U =
{G1, ..., Gn} and d is the graph distance (Definition 3.1), a
pivot p is a graph, where p ∈ D∪S and S = {S|S ⊂ Gi, Gi ∈
D}. Given p, U is partitioned into c circular non-overlapping
subspaces with radius r0p, ..., r

c−1
p as follows:

• U0: {G|r0p ≤ d(p∗, G) < r1p, G ∈ U}, where r0p = 0;
• U i: {G|rip ≤ d(p∗, G) < ri+1

p , G ∈ U}, for 1≤i<c-1; and
• Uc−1: {G|d(p∗, G) ≥ rc−1

p , G ∈ U}.

Definition 5.2: A GMTree T is a 4-ary tuple (V , E, r, c),
where V , E, r and c are the nodes, the edges, the root and
a user-specified fanout, respectively. The leaf nodes and the
internal nodes are defined as below.

(i) A leaf node vℓ covering a metric space Uℓ is a tuple
(g1,...,gn) of pointers, where n≤c, gi points to Gi and Gi ∈ Uℓ.
(ii) An internal node v covering U is a 4-ary tuple (p, |p∗|, Tp,
Rp), where p is the pivot graph and it is a (proper) subgraph of
one of the graphs in U , |p∗| is the size of the largest graph in
U , Tp is a collection of sub-GMTrees, and Rp is a collection of
radii that splits U into c roughly equally sized subspaces [44].
The sub-GMTrees index a set of circular subspaces defined as
follows:

• T 0
p covers the space U0: {G | r0p ≤ d(p∗, G) < r1p, G ∈ U},

where r0p = 0;
• T i

p ∈ Tp covers the space U i: {G | rip ≤ d(p∗, G) < ri+1
p ,

G ∈ U}, for 1≤i<c− 1; and
• T c−1

p simply covers the remaining space: Uc−1 :
{G|d(p∗, G) ≥ rc−1

p , G ∈ U}

The root r is a special internal node, with no parent, which
covers the entire graph metric space. For each leaf vℓ, we store

a list 1− |mcs(p,Gi)
|p| , where Gi’s are the data graphs covered

by vℓ and p is their pivot.

The fanout c in Definition 5.2 is used by data owners to
balance the trade-off between authentication time and VO size.
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(e) Query on GMTree

d(q,G4) = 1/5
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accessed
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(f) Digests and structure signature
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h(v5) = h(h(g3)||h(g5)||h(G3)||h(|mcs(G4, G3)|)||h(G5)||h(|mcs(G4, G5)|))

h(v2) = h(h(G4)||h(5)||h(v4)||h(r0G4)||h(v5)||h(r
1
G4))

h(v4) = h(h(g4)||h(g7)||h(G4)||h(|mcs(G4, G4)|)||h(G7)||h(|mcs(G4, G7)|))

h(v3) = h(h(p3)||h(5)||h(v6)||h(r0p3)||h(v7)||h(r
1
p3))

h(v7) = h(h(g1)||h(g2)||h(G1)||h(|mcs(p3, G1)|)||h(G2)||h(|mcs(p3, G2)|))
h(v6) = h(h(g6)||h(G6)||h(|mcs(p3, G6)|))

sroot = sign(h(v1))

r1p1

p1
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g4 g7 g3 g5 g6 g1 g2

e

a b

d
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e

a b

(a) Data graphs

p3

(d) GMTree
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|mcs(p1, G1)| = 1 |mcs(G4, G3)| = 3
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D={G1, G2, . . . , G7}

r1p1

r1p3G3

r1G4

< 3/5 ≥ 3/5
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r1p3r0p3
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(c) Size of MCSs between pivots

e

a b

cd

G4

and data graphs

Fig. 6. Illustration of GMTree construction, query evaluation and digests

Previous authentication works (e.g., [25], [45]) have already
reported that the authentication time generally decreases as the
index fanout increases and meanwhile, the VO size increases
with the fanout. Most importantly, in query processing at an
internal node v, determining its subtrees that may contain
answers requires only one similarity comparison (between the
pivot of v and the query) as we use one pivot and multiple
radii to split the space covered by v.

An alternative way to support large fanouts is to incorporate
multiple pivots in a node v as in mvp-tree [44]. Our method
can be easily extended to mvp-tree as each mvp-tree node
essentially collapses several vp-tree nodes.

5.1.1 GMTree Construction

A GMTree is constructed by a simple recursive algorithm. The
algorithm takes a graph database D:{G1,..., Gn}, the graph
distance function d and a user-specified fanout c as input. At
each recursive step, a pivot graph p and a collection of radii
Rp are decided to cover the subspaces of the metric space,
as defined in Definition 5.1(ii). For presentation clarity, we
postpone the technical details of pivot selection to Sec. 7.2.
The recursive step is to construct a sub-GMTree for the graphs
covered in each subspace. The algorithm terminates when the
graph number in the subspace is no more than fanout c.

Example 5.1: GMTree can be illustrated with an example.
Fig. 6(a) shows a graph metric space formed by our example
database D:{G1, G2, . . . , G7} given in Fig. 1. Three pivots p1,
G4 and p3 are used to index the space, whose structures are
shown in Fig. 6(b). Fig. 6(c) lists the size of MCS’s between the
pivots and the data graphs. Its GMTree constructed is presented
in Fig. 6(d), whose fanout c is 2. The first pivot p1 and two
radii r0p1, r1p1 divide the metric space into two subspaces U0

= {G3, G4, G5, G7} and U1 = {G1, G2, G6}. Since U0 and
U1 contain more than c graphs, the construction proceeds
recursively. For example, the subspace U0 is divided by G4

with radii r0G4
and r1G4

. Since there are two graphs in the
subspaces of U0, the construction terminates.

The query evaluation algorithm is incorporating the pruning
of Theorem 4.2 into a depth-first traversal on GMTree. At the
leaf levels, we apply Lemma 4.1 to perform filtering. This
is illustrated with Example 5.2. Due to space limitation, we
present the detailed algorithm in Appendix B.

Example 5.2: Consider the q and D in our running example
Fig. 1. Suppose t is 1/4. Fig. 6(e) shows the query evaluation
on the GMTree of D constructed in Fig. 6. In Fig. 6(e), the
visited nodes are marked with the gray shadow. The nodes
are traversed in the following order: v1, v2, v4, v5, v3, and
v6. The subtree with the pivot G4 (rooted at v2) is accessed
because r0p1 − d(q, p∗1) ≤ t. Similarly, the children of v2 are
accessed because they are not pruned. v4 and v5 are leaf nodes
and they point to data graphs. G3, G4, G5 and G7 cannot be
filtered by Lemma 4.1 and they are included in the candidates.
Only G4 and G7 among them are included in the answer.
Similarly, the remaining answer G6 can be retrieved from the
subtree of pivot p3. Finally, the subtree of v7 is pruned since
r1p3 − d(q, p∗3) > t.

6 AUTHENTICATION WITH GMTREE

This section details the authentication with GMTree. Specifi-
cally, we present the signing of GMTree, the VO definition,
the VO construction and the authentication algorithm.

6.1 Signing GMTree

Similar to other indexes for authentication, GMTree associates
hash values to its data and nodes hierarchically and the data
owner signs the hash of the root of GMTree. The hash values
(a.k.a digests) of the data graphs, leaf nodes and internal nodes
are defined as follows.

Definition 6.1: The digest of a data graph G in D is defined as
h(G) = h(V (G)||E(G)), where V (G) and E(G) are canoni-
cal representations of vertices and edges of G, respectively.

We remark that any canonical form (e.g., [30]) of V (G) and
E(G) can be used in Definition 6.1. The only requirement is
that it must be known to both the SP and clients.

Definition 6.2: The digest of a leaf node vℓ: (g1,. . .,gn) is de-
fined as h(vℓ) = h(h(g1)||...||h(gn)||h(G1)||h(|mcs(p,G1)|)
||...||h(Gn)||h(|mcs(p,Gn)|)),
where gi is a pointer pointing to the graph Gi∈D, for i = 1...n
and p is their pivot.

The digest of an internal node v: (p, |p∗|, T p, Rp) is h(v) =

h(h(p)||h(|p∗|)||h(T 0
p )||h(r

0
p)||...||h(T

c−1
p )||h(rc−1

p )),

where T p = (T 0
p ,. . . ,T c−1

p ) and Rp = (r0p,. . .,rc−1
p ).
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Suppose the GMTree’s root is vr. Its digest h(vr) is con-
structed recursively by Definitions 6.1 and 6.2. The DO signs
h(vr) using a public-key digital signature scheme (e.g., RSA).

Example 6.1: Fig. 6(f) shows the digests of nodes and the
signature of the GMTree of Example 5.2.

6.2 Definition of Verification Objects

Verification objects VOs contain five parts: (i) the query an-
swers and their MCS mappings with q for checking correctness;
(ii) the non-answers in the candidate set Cq; (iii) the visited
nodes of the GMTree traversal; (iv) the boundary nodes of the
traversal; and (v) the GMTree’s signature. Specifically, VOs
are given below.

Definition 6.3: A VO is a 5-ary tuple (M,N,Hv, Hb, sroot),
where

• M :[G1,h(G1),m1,. . .,Gn,h(Gn),mn] is a list of answer
graphs in RS:[G1, . . . , Gn], their digests and their MCS

mappings with q;
• N :[G1, h(G1), |mcs(p1, G1)|, . . . , Gj , h(Gj), |mcs(pj , Gj |]

is a list of the non-answers in the candidates Cq and the
filtered data graphs by Lemma 4.1 with their digests and
the mcs sizes with their pivots;

• Hv stores the traversal during the query evaluation as
follows:

– for each internal node v, we append to Hv

∗ the relevant content v(p, |p∗|, mcs(q, p), xv), where
xv is some hint to verify mcs(q, p) (construction
of xv is detailed in Sec. 7.1);

∗ the radius list: r1p,...,rc−1
p (and r0p is not needed

since it is always zero); and
∗ the subtrees that are not pruned T 0

p ,...,T tv−1
p , where

tv is the number of subtrees that are not pruned;

– for each leaf node vℓ, we append to Hv:

∗ the digest h(vℓ) of vℓ;
∗ the list of pointers g1, . . . , gn in vℓ; and
∗ the digests of pointers h(g1), . . . , h(gn).

• Hb stores the traversal boundary. For each internal node
v visited in traversal, we append to Hb

– the digests of subtrees h(T tv
p ), . . . , h(T c−1

p ) that are
pruned by Theorem 4.2; and

– the digests of their radii h(rtvp ), . . . , h(rc−1
p ).

• sroot is the signature of the GMTree provided by the DO.

We make some remarks on the VO’s definition. (i) Clients
rely on Hv to authenticate the traversal of the GMTree by a
scan of records stored in Hv (detailed in Sec. 6.5). (ii) N
must be introduced as clients need to verify that non-answers
in Cq are in fact non-answers. (iii) For each visited node v
in Hv , its sub-GMTrees pruned are indexing the subspaces
further away from v’s pivot than the bound determined by
Theorem 4.2. Since these sub-GMTrees are always consecutive

in v’s children, the candidates are indexed near to each other.

The implementation of Hb can be further optimized by a
straightforward adoption of authenticating search trees, e.g.,
embedding MHT into (T p, Rp) of each v. To avoid confusions,
we omit such implementation details in the presentation of the
VO definition, the construction and authentication algorithms.

Procedure auth similarity
Input: db D, GMTree T rooted at v and query Q = (q, t)
Output: VO including query result RS

01 if v is a leaf of T
/* query answers RS is included in M */

02 Mv = [G | ds(q, G) ≤ t, G ∈ v]
03 VO.M = VO.M ⊕ [(G, h(G), m(G, q)) | G ∈ Mv],

where ⊕ denotes concatenation

/* non-answer candidates and filtered graphs in v */

04 Mv
f=[G | G∈v, 1− |mcs(p,G)|

|p| −d(q, p) > t] //p is pivot of G

Mv
′ = [G | G ∈ v] − Mv − Mf

v

05 VO.N = VO.N ⊕ [(G,h(G),|mcs(G, p)|) | G ∈ Mv
′ ∪Mf

v ]

06 Hv = Hv ⊕ h(v) ⊕ [(g, h(g))|g ∈ v]
07 return VO

08 denote the pivot of v as p

09 d = d(q, p∗) = 1− |mcs(q,p)|
max(|p∗|,|q|) //mcs(q, p) = mcs(q, p∗)

/* VO construction */ /* v is actually visited */
10 VO.Hv = VO.Hv ⊕ v(p, |p∗|, mcs(q, p), xv) ⊕ r1p

⊕ . . .⊕ rc−1
p //r0p is always 0, not add to VO for saving

/* examining the sub-GMTree of v */
11 for each i in [0,. . ., c− 1]
12 if rip − d ≤ t

/* visited sub-GMTree – put its content to Hv */
13 VO.Hv = VO.Hv ⊕ T i

p
14 else

/* pruned sub-GMTrees – put their digests to Hb */
15 VO.Hb = VO.Hb ⊕ h(T i

p) ⊕ h(rip)... ⊕

h(T c−1
p ) ⊕ h(rc−1

p )
16 break

/* traversal of query evaluation */
17 for each i in [0,. . ., c− 1]
18 if rip − d ≤ t
19 VO ⊕ auth similarity(D,T i

p,Q)
20 else break

21 add sroot of T of DO to VO, if sroot is not in VO yet

22 return VO

Fig. 7. Procedure auth similarity

6.3 VO Construction

To facilitate authenticated query processing, the SP not only
evaluates queries but also simultaneously constructs VO in
Procedure auth similarity (shown in Fig. 7). For presen-
tation clarity, we omit the verbose pseudo-code that introduces
delimiters to VO. The inputs of Procedure auth similarity

are a database D, GMTree T and query Q = (q, t). The output
is the VO including the query result RS . The main ideas of
the VO construction can be described as follows.

(i) In Lines 01-07, the traversal on the GMTree reaches a
leaf node v. The algorithm determines the answer graphs in
Line 02, and stores them together with their digests and their
MCS mappings with q in M in Line 03. Similarly, in Lines 04-
05, the algorithm decides the non-answers, and stores them
with their digests in N . h(v), pointers in v and digests of the
pointers are also added to Hv in Line 06.

(ii) Lines 08-20 are the traversal at internal nodes of GMTree.
As the traversal proceeds, auth similarity recursively con-
structs Hv (Lines 10-13) and Hb (Lines 14-15). Specifically,
when an internal node v is visited, its relevant content and its
radius list (Line 10) and sub-GMTrees not pruned are added to
Hv (Lines 12-13). On the other hand, if T i

p is pruned, T i
p and

all its subsequent sub-GMTrees are not visited by the traversal
and therefore their digests are added to Hb (Lines 14-15).

(iii) Lines 17-20 simply recursively traverse the GMTree.

(iv) Finally, if the signature of the GMTree’s root is not yet
present in the VO, sroot is added to VO in Line 21.
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M = [G4, h(G4),m(q,G4)

G6, h(G6),m(q,G6),

G7, h(G7),m(q,G7)];

N = [G3, h(G3), |mcs(G4, G3)|

G5, h(G5), |mcs(G4, G5)|];

Hv = [v1(p1, 5,mcs(q, p1), x1), r1p1, v2, v3,

v2(G4, 5,mcs(q,G4), x2), r1G4
, v4, v5,

h(v4), g4, h(g4), g7, h(g7),

h(v5), g3, h(g3), g5, h(g5),

v3(p3, 5,mcs(q, p3), x3), r1p3, v6,

h(v6), g6, h(g6)];
Hb = [h(v7), h(r1p3)];

sroot, provided by the DO

Fig. 8. VO of Example 6.2

Example 6.2: In this example, we show the VO construction
for the query result of Example 5.2. Recall from Fig 6(a)
that the traversal of the GMTree is v1, v2, v4, v5, v3 and v6.
auth similarity performs this traversal (Lines 17-20) and
constructs Hv in this order. For the visited leaf nodes, v4, v5
and v6, their digests, pointers and digests of pointers are added
to Hv (Line 06). For the visited internal nodes v1, v2 and v3,
auth similarity adds their relevant contents, radius lists,
and subtrees not pruned into Hv (Lines 10, 12-13). Procedure
auth similarity also adds the digests for pruned subtrees
to Hb (Lines 14-16). In the example, G4, G6 and G7 are
answers, and G3 and G5 are non-answers. When the traversal
of auth similarity reaches the leaf nodes v4, v5 and v6, it
adds G4, G6 and G7 together with their digests and mappings
into M (Lines 02-03), and adds G3 and G5 together with their
digests into N (Lines 04-05), respectively. For the pruned node
v7, auth similarity adds its digest and the digest of its
radius to boundary Hb (Line 15). Finally, the SP has sroot
and adds it to the VO in Line 21. The VO constructed by
auth similarity is shown in Fig. 8

Discussion. Candidate graphs obtained from GMTree often
form groups (in the form of lists of consecutive graph ids).
The reason is that if a leaf node v is visited during query
processing, all graphs covered by v (which are stored together)
are candidates and form a group. Hence, the group size is
at least the number of graphs of a leaf node. Moreover,
the leaf nodes visited are often consecutive. For example,
G4, G7, G3, G5, G6 in Fig. 6(e) can form a group. It is evident
that deriving VO for consecutive candidate graphs is efficient.

6.4 Cost Model of VO Size

This subsection models the overall VO size of GMTree. Since
the candidate graphs obtained from traversing GMTree are
grouped, the boundary nodes are few and a small number of
digests in Hb are needed to authenticate the traversal. Due
to the same reason, the number of visited sub-GMTrees is
relatively small. These two factors lead to smaller VO sizes. In
contrast, if the candidate and non-candidate graphs are stored
alternately in the worst case, each individual candidate needs
a digest in Hb which results in large VOs.

For example, given a GMTree of fanout 8, if 3/4 sub-
GMTrees are visited and |D| = 10000, the GMTree only needs
5% digests of the worst case. (The full arithmetic calculations
are presented in Appendix A.3.) It is verified by experiments
(see the first experiment of Sec. 8.1) that a baseline approach
is close to the worst case.

Let ssig , srev, srad, sptr, sh , si and sG denote the sizes
of a signature, a relevant content of a node, a radius value, a
pointer, a digest, an integer and a data graph, respectively. Let
Vvisited denote the set of visited nodes of GMTree. The overall
VO size of a query (q, t) on a GMTree T of a fanout c is shown
in Fig. 9. Fig. 9 shows that the VO size depends on the number
of visited subtrees. In particular, for Hb,

∑

v is visited
v is internal

c is the

|VO| =
∑

v is visited
v is internal

(

srev + (c− 1)srad
)

+
∑

v is visited sptr − sptr

+
∑

v is visited
v is leaf

(

(c+ 1)sh + c× sptr
)

+2sh
(
∑

v is visited
v is internal

c− (|Vvisited|− 1)
)

+
∑

v is visited
v is leaf

c(sh + sG + si)

+ssig

//Hv for leaf

//M and N

//sroot

//Hv for internal

//Hb

Fig. 9. Cost Model of VO Size

number of subtrees of visited internal nodes and |Vvisited|−1
is the number of visited ones except the root. Since the
visited subtrees of an internal node are consecutive, their
difference is the number of boundary nodes. It is multiplied
by 2sh as we need two digests for each boundary node. Due
to space limitation, the arithmetic derivation is presented in
Appendix A.4.
6.5 Authentication Algorithm
To authenticate the query results, clients are required to rerun
the traversal on GMTree and synthesize the digest of GMTree’s
root from the VO. Specifically, clients decide if (i) the graphs
in VO.M and VO.N are similar and dissimilar, respectively,
to the query; (ii) no boundary index node overlaps with the
query; and (iii) the synthesized digest hroot of GMTrees root
agrees with the signature sroot provided by the DO.

Procedure auth summarizes the authentication algorithm,
shown in Fig. 10. auth takes a query Q and VO that contains
query result RS as input and outputs true only if RS
is sound and complete. Line 01 recomputes the root digest
recursively. If the synthesized digest hroot agrees with the
DO’s signature sroot, auth returns true; otherwise, false
(Lines 02-03). Here, we focus on the recursion logic of
auth aux as presented in Fig. 11.

Procedure auth aux reruns the traversal recorded in Hv .
Each visited node v can be either a leaf node (Lines 02-16) or
an internal node (Lines 17-27). In the former case, auth aux

fetches h(v), the pointers in v, the digests of pointers from
Hv (Line 03). It also fetches the answers Mv and non-
answers Nv of v from M and N , respectively (Lines 04-
05). auth aux then computes an intermediate string strv to
concatenate the digests of the pointers, answers and non-
answers (Line 06), where sort is the publicly known sorting
function that reorders the pointers and graphs, used by the
SP . auth aux exits, if (i) G ∈ Mv is not similar to q; or (ii)
C ∈ Nv is similar to q; or (iii) the recomputed digests do not
match with the ones stored in VO (Lines 07-15). Otherwise,
the recomputed digest of v is returned (Line 16).

In the latter case, auth aux recursively visits the subtrees
visited in Hv and scans the pruned subtrees recorded in Hb

to recompute the digest of v. Specifically, auth aux first
retrieves the relevant content, radius list and subtrees that
are visited from Hv (Line 18). auth aux exits, if mcs(q, p)
is detected incorrect using the hint xv (Line 19). (We will
dedicate Sec. 7.1 for this.) Otherwise, auth aux computes the
distance between the query and the augmented pivot d(q, p∗)
in Line 20 and Lines 21-27 reconstruct the digest of v. By
Definition 6.2, the construction of the digest of internal node v
needs the digests of its subtrees. Hence, auth aux recursively
constructs the digests of the subtrees that are not pruned
(Lines 23-24) and fetches the digests of pruned subtrees from
Hb (Lines 25-27). The digest of v is returned (Line 28).

Due to space restrictions, the proofs of the soundness and
completeness of authentication are provided in Appendix A.6.
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Procedure auth

Input: Q = (q, t), VO = (M,N,Hv , Hb, sroot),
, where sroot is the signature of the digest of GMTree’s root

Output: true iff RS is correct: sound and complete

01 hroot = auth aux(Q, VO)
02 if hroot agrees with sroot return true
03 else return false

Fig. 10. Procedure auth

Example 6.3: Continuing with Example 6.2, auth recon-
structs the digest h(v1) of the root of GMTree by rerunning the
traversal recorded in Hv (Line 01). auth then compares the
reconstructed h(v1) with the signature sroot. If h(v1) agrees
with sroot, the query result is correct (Line 02).

Procedure auth aux proceeds the traversal as follows.
The traversal starts with the root v1. auth aux first detects
the correctness of the mcs(q, p1) in VO (Lines 18-19). If
mcs(q, p1) is correct, auth aux reconstructs the digest of
v1 as h(v1)=h(h(p1)||h(|p∗1|)||h(v2)||h(r

0
p1
)||h(v3)||h(r1p1

))
(Lines 21-27). Here, h(p1), h(|p∗1|), h(r

0
p1
) and h(r1p1

) can be
readily computed from VO (Lines 18). However, auth aux

needs to visit subtrees of v2 and v3 to reconstruct h(v2) and
h(v3) recursively (Lines 23-24).

When the traversal reaches the internal node v2, auth aux

computes h(v2) by the same logic with h(v1). However, for v3,
auth aux can detect v7 is pruned (Line 22) and fetch h(v7)
and h(r1p3) directly from Hb (Lines 25-27). auth aux only
needs to visit the subtree of v6 to compute h(v6) (Line 24).

When the traversal reaches the leaves v4, v5 and v6,
auth aux fetches their pointers, answers (G4, G6 and G7),
non-answers (G3 and G5) and their digests from VO, respec-
tively (Lines 03-05). auth aux verifies if (i) the answers are
similar to q (Lines 09-11), (ii) the non-answers are dissimilar
(Lines 12-14) and (iii) recomputed digests match with the ones
stored in VO (Lines 08,10,13 and 15). auth aux then returns
the recomputed digests h(v4), h(v5) and h(v6) (Lines 06, 16).

7 OPTIMIZATION PROBLEMS

This section presents two optimizations for GMTree, namely
authenticated MCS computation and pivot selection problem.

7.1 Authenticated MCS Computation

As the MCS computation is extensively involved in client-
side authentication, we present an authenticated version of the
state-of-the-art, vertex-cover-based MCS computation method
(denoted as VC-mcs) [20] to save client’s authentication time.

7.1.1 Overview of VC-mcs
Given two graphs G and G′, to determine mcs(G, G′), the
VC-mcs performs the following tasks:

1) Determine a vertex cover V CG of G;
2) Compute all common subgraphs S between V CG and G′;
3) For all S ∈ S , determine G - V CG and G′ - f (S), where
f is the subgraph isomorphic mapping of S;

4) Determine all maximal independent sets MS of G′ - f (S);
5) For each M ∈ MS , determine the maximum matching
JM in the bipartite graph B(G,G′,M), where B(G,G′,M) =
(U , V , E), U and V are the vertices of G - V CG and M ,
respectively, and for ∀u ∈ U , ∀v ∈ V , (u, v) ∈ E if
• u and v have the same label;
• The neighbors of u in S should be mapped to the neighbors

of v in f(S), and vice versa; and
• The edge of u and u’s neighbor in S should have identical

label of v and v’s neighbor in f(S).

Procedure auth aux

Input: Q = (q, t), VO=(M,N,Hv , Hb, sroot)
Output: recomputed digest of v

01 tok = Hv .getNext()
02 if tok represents a leaf node //check ans. & non-ans.
03 denote tok as [h(v), g1, h(g1), . . . , gn, h(gn)]
04 Mv = [(G, h(G),m)|(G, h(G),m) ∈ M∧ G pointed by some gi]
05 Nv=[(C, h(C), |mcs|)|(C, h(C), |mcs|)∈N∧C pointed by some gi]

/* strv is used to reconstruct the digest of v */
06 strv = hash(sort(Mv ⊕Nv⊕ [g1,...,gn]))

/* if hash values do not match, program exits */
07 for each i ∈ [1..n]
08 if h(gi) ̸=hash(gi) raise exception
09 for each G ∈ Mv

10 if !is_similar(G,q,m,t) or h(G) ̸=hash(G)
11 raise exception
12 for each C ∈ Nv

13 if is_similar(C,q,t) or h(C) ̸=hash(C)
14 raise exception
15 if h(v) ̸=hash(strv) raise exception

/* leaf v is authenticated, return its digest */
16 return hash(strv)

17 else //tok represents an internal node
18 denote tok as

[v(p, |p∗|,mcs(q, p), xv), r1p, ..., r
c−1
p , T 0

p , ..., T
tv−1
p ]

//r0p = 0 by def. T i
ps are visited subtrees

19 if mcs(q, p) is detected incorrect using xv raise exception
//Sec. 7.1 will detail the algo. to verify mcs(q, p) from xv

20 d = d(q, p∗) = 1− |mcs(q,p)|
max(|p|,|p∗|) //mcs(q, p)=mcs(q, p∗)

/* reconstruct digest of v */
21 strv = hash(p)||hash(|p∗|)
22 if !(rtv−1

p ≤ d+ t < rtvp ) raise exception
23 for each j in [0,...,tv − 1]

24 strv = strv || auth aux(Q,VO) || h(rjp)

25 for each j in [tv ,...,c− 1]

26 h(T j
p ) = Hb.getNext() and h(rjp) = Hb.getNext()

27 strv = strv || h(T j
p ) || h(rjp)

28 return hash(strv)

Fig. 11. Procedure auth aux

6) S∪JM forms a larger common subgraph than S, in which
max{S ∪ JM}, for M ∈ MS is called the extension of S,
denoted as ext(S); and

7) mcs(G,G′) is the maximum one of all ext(S), S ∈ S .

As reported in [20], the time complexity of VC-mcs is
O(3|G

′|/3|G′|2.5(|G′| + 1)|V CG|), where O(3|G
′|/3) is for

Step 4), O(|G′|2.5) is for Step 5) and O((|G′| + 1)|V CG|) is
the number of iterations of Steps 3)-6).

7.1.2 Authenticated VC-mcs
A naive method for client’s authentication is that after receiv-
ing the mcs(q,G) from the SP , the client recomputes it from
scratch. However, it is inefficient, as VC-mcs has already been
done once by the SP . Therefore, our authenticated VC-mcs
(auth-VC-mcs) requires the SP to record some intermediate
results as hints in VO during its VC-mcs. Importantly, the
correctness of the hints can be easily determined by a scan
by the client. MCSs are not recomputed from scratch.

Definition 7.1: Given a query q and a graph G, the hint of
mcs(q,G) is a 4-ary tuple (mis(G), smis, J , VC), where

• mis(G) is all the MISs of G precomputed by the DO;
• smis is the DO’s signature of mis(G); and
• J and VC are the maximum matchings and the minimum

vertex covers of the bigraphs in Step 5) of VC-mcs,
respectively, computed by the SP on-the-fly.

Protocol. The protocol of auth-VC-mcs with respect to the
DO, the SP and the client is as follows, where I⃝ is offline
and others are done on-the-fly.
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b

JM : bb

V CM : { b }
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= { a b }
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a b
query q

V Cq

a
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G

a
f

q-V Cq

,

DO
S

f(S)

JM
V CM

MHT

V Cq

mcs
JM
V CM

mis(G)

Client

{{a},{b,c}}
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MHT sign.

sign.

q-V Cq={b}
G-f(S)={b,c}

G-f(S)MIS of
M={b,c}

M

1

2

3

4
5

mcs hint:

hint

1

2 q-V Cq

G-f(S)

3 MIS of
G-f(S)

4

5 ?

6
mcs?

auth:

using mis(G)

mcs(q,G)
6

=ext(S)

7

I

II

III

IV

Fig. 12. The process of auth-VC-mcs

I⃝ The DO precomputes all MISs of a graph G, and sends the
MISs with their signature to the SP offline. MISs are sorted
(by vertex ids) and compressed using classical compression
algorithms. Since MISs often contain numerous frequent pat-
terns (ids), they can be efficiently compressed.
II⃝ The client computes a vertex cover V Cq of q and transmits
both V Cq and q to the SP .
III⃝ The SP receives the q and V Cq from the client. It performs
Steps 2)-7) of VC-mcs and constructs the hints of mcs(q,G)
for G as follows:

• Add into the hints all the compressed maximal indepen-
dent sets of G and their signatures; and

• For all S∈S and M∈MS , add to the hints the maximum
matching JM and the minimum vertex cover V CM of
B(G,q,M) (using an associative hashtable of B(G,q,M)).

IV⃝ Upon receiving the VO for G, the client retrieves
mcs(q,G) and its hint in VO, and performs the simplified

Steps 2)-7) of VC-mcs to verify the mcs(q,G). The simplifi-
cations are the following.

• In Step 4), compute the MISs of G− f(S) by excluding
f(S) from the MISs of G; and

• In Step 5), reconstruct the B(G,q,M) and retrieve its JM
and V CM from the hints. Then, if JM and V CM are not
a matching and a vertex cover of B(G,q,M), respectively,
or if |JM | ≠ |V CM |, mcs(q,G) is subverted.

auth-VC-mcs is more efficient than VC-mcs for the client.
Specifically, the time complexity of the Step 4) is reduced to
O(|G||mis(G)|) and that of the Step 5) is reduced to O(|G|2)
and hence the client’s time complexity is reduced to audc =
O(|G||mis(G)||G|2(|G| + 1)|V Cq|). The total authentication

time for the client is O(( |D|
c + |Cq|− |Rq|)× audc + |Rq|×

|G|), as authenticating an answer just needs O(|G|). The time
complexity for the SP is audsp = O(|G||mis(G)||G|4(|G|+
1)|V Cq|), as it is O(|G|2) to compute the minimum vertex

cover of a bigraph. The total time for the SP is O(( |D|
c +

|Cq|) × audsp). We provide the proof of the correctness of
auth-VC-mcs in Appendix A.7 for presentation brevity.

Example 7.1: Fig. 12 shows the process of auth-VC-mcs.
I⃝ The DO precomputes all the MISs mis(G) of G, and sends
mis(G) and its signature to the SP offline.
II⃝ The client submits to the SP the query q with a vertex
cover V Cq={a}.
III⃝ Once receiving the query q and a vertex cover V Cq of
q, the SP enumerates all the common subgraphs between
V Cq and G in Step 1⃝. In this example, V Cq only has one
common subgraph S={a} with G as indicated by the mapping
f in Fig. 12. In Step 2⃝, the SP computes the q-V Cq and

G-f(S). In Step 3⃝, the SP decides all the MISs of G-
f(S) using mis(G). In Step 4⃝, for each MIS M of G-
f(S), the SP constructs a bigraph B(G,q,M) between q-V Cq

and M . We only have one bigraph here as G-f(S) has only
one MIS M={b, c} in this example. The SP computes the
maximum matching JM and the minimum vertex cover V CM

of B(G,q,M). After that, in Steps 5⃝ and 6⃝, the SP obtains
mcs(q,G) = S ∪ JM as this example only has one S and
one JM . Finally, the SP adds JM , V CM , mis(G) and its
signature and G into the hint of mcs(q,G), and sends them
in the VO to the client.

IV⃝ Upon receiving the VO, in Steps 1⃝ to 4⃝, the client
recomputes the common subgraph S={a} between V Cq and
G, and reconstructs the bigraph B(G,q,M) using mis(G) and q
in the hint. Then, in Step 5⃝, the client checks if JM and V CM

in the hint are a matching and a vertex cover of B(G,q,M),
respectively, and if |JM |=|V CM |. If they are true, and the
recomputed mcs(q,G) equals to the one in the hint as shown
in Steps 6⃝ and 7⃝, the mcs(q,G) is authenticated.

Discussion. We remark that when G is large and |mcs(q,G)|
is close to |q|, VC-mcs may be slower than direct backtrack-
ing [20]. To address this, we complement VC-mcs with a
simple enumeration method (denoted as Enum), which has the
same time complexity as the backtracking in such scenarios
[46]. The hint of Enum is simply |mcs(q,G)|. Specifically,
if |mcs(q,G)|>β×|q|, where β ∈ [0, 1] is a user-defined
parameter whose value is close to 1, the client simply enu-
merates the subgraphs of q of size |mcs(q,G)|+1. If (i) no
such subgraph is contained in G; and (ii) the mcs(q,G) is a
common subgraph of q and G, then the mcs(q,G) is authen-
ticated. Otherwise, we adopt auth-VC-mcs for other cases, as

Enum is generally not efficient to handle O(C |q|/2
|q| ) subgraphs.

Moreover, β can also be tuned between the authentication time
and VO size, as Enum’s hint is smaller than auth-VC-mcs.

7.2 Pivot Selection

To optimize the performances of GMTree, we propose a
sampling approach to select pivots for a GMTree that produces
a small candidate set. Existing works on pivot selection often
adopt to minimize some cost function in a heuristic manner.
In this paper, we adopt the min max covering radius heuristic
as it produces the fewest candidates as reported in [17].

A unique property of our graph data is that they can
be decomposed into subgraphs, whereas the data objects in
the conventional metric space are assumed atomic. In our
preliminary experiments, we observe that using subgraphs
as pivots could produce smaller costs than using the data
graphs. Therefore, in this paper, we are going to consider the
subgraphs in our pivot selection. Our min max covering radius
heuristic is formally presented as follows.

Definition 7.2: Given a set of graphs D = {G1, G2, . . . , Gm}
and the set of subgraphs S = {S|S ⊂ G,G ∈ D}, select one
graph p as pivot from D ∪ S to minimize the cost function

X = max
i=1...m

{d(p∗, Gi)}, (3)

where p∗ is the augmented pivot constructed from p as
discussed in Sec. 4.
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The pivot selection problem is NP-hard. Due to space lim-
itations, we present the proof in Appendix A.8. For practical
considerations, we propose a sampling method to select pivots.

Sampling approach. We randomly sample s graphs from the
pruned search space. This can be established by first randomly
choosing data graphs from D and then randomly deleting some
vertices from the chosen data graphs. We try all sample graphs
and compute the costs. The minimum cost found in this way
is the sample minimum, denoted as â. Note that â is a random
variable. We use â to approximate the population minimum,
denoted as a. Suppose b is the population maximum. Then,
â ∈ [a, b]. Since D ∪ S is finite, a and b exist and are finite. By
the definition of graph distance, 0 ≤ a ≤ â ≤ b ≤ 1. Suppose
the graph distance between any two graphs is uniformly
distributed in [a, b]. Let ϵ bound the error of â from a. Then,
for any 0 < ϵ < b− a, we have

Pr(â− a ≤ ϵ) ≥ 1− (1− ϵ)s (4)

Formula (4) states that the sample minimum â is very close
to the population minimum a, i.e., â − a is bounded by an
arbitrarily small number ϵ, with a high probability. Specifically,
1 − (1 − ϵ)s grows exponentially with respect to the sample
size s. For example, when ϵ = 0.1, just 30 random samples
can guarantee â− a < 0.1 with probability larger than 95%.

Determining pivot size. The sampling may select large pivots
to minimize the number of candidates, but the large pivots will
decelerate the GMTree traversal. We propose a simple cost
model to quantify these. We denote the cost at a certain pivot
size as Cost. Cost consists of two costs: (i) the number of the
maximum matchings |J | and the minimum vertex covers |VC|
in the MCS computation of pivots, as the auth-VC-mcs needs
a scan on these structures; and (ii) the number of candidates.

Cost = |J |+ |VC|+ k × |Cq|. (5)

k denotes the relationship between |J |+ |VC| and |Cq|, which
is determined by issuing many random queries.

To choose an optimal pivot size using our model, we
can simply increase the pivot size and stop once ∆Cost is
observed larger than zero. To obtain the Cost for each pivot
size, we apply the sampling method on the graphs of that size
in D ∪ S to determine the pivots.

The time complexity of GMTree construction with the
sampling-based pivot selection is O((logc |D|−1)×s× |G|×
dist × |D|), where dist is the time complexity of VC-mcs in
Sec. 7.1.1. For presentation brevity, we provide the detailed
analysis in Appendix A.9.

8 EXPERIMENTAL EVALUATION

In this section, we present an extensive experimental evalu-
ation that verifies the efficiency of our proposed techniques
and the effectiveness of our optimizations. We performed an
experimental comparison with the baseline method in Sec. 4
and Grafil∗. Grafil∗ is extended from the seminal subgraph
similarity search method Grafil [1] with a basic authentication.
In particular, the edge-based similarity definition of Grafil has
been modified and has been replaced by Definition 3.2. Re-
garding the baseline method, we used data graphs as pivots and
turned off all the proposed optimizations. Regarding Grafil∗,
we built MHTs on Grafil’s matrix index for authentication.

Specifically, we built the MHT on the column vectors of the
matrix, as Grafil uses its matrix in columns.
Experimental settings. We ran our experiments on a server
with a Dual 6-core 2.66GHz CPU running CentOS 5.6.
Our implementation was written in Java with JDK 1.6. The
maximum memory for our Java Virtual Machine was set to 4G
bytes. We used an external graph isomorphism library VFLib
[47] and the state-of-the-art MCS computation library CCP4
[48]. SHA and RSA were used as our crypto signing schemes.
Benchmark datasets. We used a real dataset AIDS as in [1]–
[3], [6] and a synthetic dataset SYN [49] in our evaluation.
Since PubChem [10] is used in our motivating examples, we
tested our algorithms on a PUBCHEM dataset in Appendix D.
Our AIDS dataset was provided by X. Yan et al. [1], which
contains 10,000 molecular graphs. Our synthetic data genera-
tor was provided by J. Cheng et al. [49]. The statistics of the
datasets are presented in Tbl. 2 in Appendix C.
Query workload. Similar to [1], [2], we tested query graphs
of different sizes: Q4, Q8 and Q12. Qm,m = 4, 8, 12 means
that the query graph has m vertices. Qm is also a mixture
of queries of different densities. Each Qm contains 1,000
query graphs. Following [2], the possible numbers of missing
vertices σ of q are 1, 2 and 3. Due to space restrictions, we
present the complete description in Appendix C.

Our experiments present the performances of our techniques
on the SP’s query time, the client’s authentication time and
the VO size, respectively. The reported performances were

averaged performances of our techniques on 1,000 queries in

each query set. VOs were simply compressed by the gzip

package in JDK 1.6. To study the GMTree’s characteristics un-
der a wide range of fanouts, our experiments were conducted
with fanouts of 22, 24 and 26, unless otherwise specified.

8.1 Comparison with the Baseline and Grafil∗

This experiment compares the performances of GMTree with
the baseline and Grafil∗ in terms of the VO size and the time
on AIDS and SYN, respectively.
Comparison of VOindex size. Figs. 13(a)-(b) compare the
VOindex size on AIDS and SYN, respectively. Fig. 13(a)
presents that our VOindex is only 3% of Grafil∗. The reason
is that the column vectors of the matrix of Grafil∗ are high
dimensional as the matrix often has thousands of rows and
MHTs on high dimensional data usually produces large VOs. In
addition, since the candidate graphs of our GMTree are located
near to each other, we only needs about 6% digests of Grafil∗

to authenticate the traversal boundary. We do not show Grafil∗

on SYN because that the feature extraction on SYN can not
finish due to its high density. Figs. 13(a)-(b) also present that
our VOindex is clearly smaller than that of the baseline as the
filtering of the baseline is poor.
Comparison of VOcand size. Figs. 13(c)-(d) compare the
VOcand size on AIDS and SYN, respectively. From Fig. 13(c),
we note that our VOcand is in the same order of magnitude
as Grafil∗, since we have comparative numbers of candidate
graphs. Specifically, for Q8 on AIDS, the precision of GMTree
(i.e., |Rq|/|Cq|) is 0.7K/4.7K, 3.4K/4.9K and 4.6K/6.6K for
σ=1, 2, 3, respectively. In comparison, the precision of Grafil∗

is 0.7K/5.8K, 3.4K/7.7K and 4.6K/8.5K for σ=1, 2, 3, respec-
tively. We highlight that the similarity search by nature has
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Fig. 13. Comparison of GMTree with Grafil∗ and the
baseline in terms of VO size and time on AIDS and SYN

large candidate sets and that is why we optimize the MCS

computation. While the size of GMTree is in the same order
of magnitude as Grafil∗ (on AIDS, GMTree is 4.9M bytes and
Grafil∗ is 1.6M bytes), the candidates of GMTree are smaller
than those of Grafil∗, by using Lemma 4.1 on GMTree’s leaf
nodes. In particular, the average size of the top 5% largest
candidates of GMTree is 1.5 times smaller than that of Grafil∗.
Figs. 13(c)-(d) also show that our VOcand is about 40%
smaller than that of the baseline.

Comparison of query time. Figs. 13(e)-(f) compare the SP’s
query time on AIDS and SYN, respectively. Fig. 13(e) shows
that our GMTree outperforms Grafil∗. In particular, our GMTree
is faster than Grafil∗ by a factor of 2 when σ = 1. Figs. 13(e)-
(f) also presents that the GMTree is about 40% faster than the
baseline on average.

Comparison of authentication time. Figs. 13(g)-(h) compare
the authentication time on AIDS and SYN. Fig. 13(g) presents
that the GMTree is at least 23% and 28% faster than Grafil∗

and the baseline, respectively, on AIDS. Fig. 13(h) shows that
GMTree is at least 44% faster than the baseline on SYN.

8.2 Authenticated Query Overhead
In this experiment, we show the performance breakdown of au-
thenticated and unauthenticated query in Fig. 14. Figs. 14(a)-
(b) show that the overhead needed to support authenticated
queries is about 100% of the time of unauthenticated query.
However, Fig. 14(a) shows that the client’s time is much
smaller than the unauthenticated one. Fig. 14(b) shows fur-
ther the comparison on data graphs with various densities.
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Fig. 14. Authentication overheads on AIDS and SYN

We observe that GMTree is more efficient and effective on
sparse graphs as the distance computation requested increases
significantly as the density increases. (It is also observed by
[2], [8].) This is consistent with Fig. 14(a) that GMTree is
efficient on real datasets since chemical molecular graphs are
often sparse (as reported in e.g., [1], [46]). GMTree is more
efficient than the state-of-the-art technique Grafil∗ on the real
dataset (Fig. 13). Finally, we remark that the SP is often
equipped with powerful machines, which is not the case here.

8.3 Experiments on query size.
In this experiment, we use the AIDS and SYN datasets and
their Q4, Q8 and Q12 query sets. To study the effect of query
size on our techniques, we fix σ to 1. We vary σ in later
experiments. Fig. 15 shows the SP’s query time, the client’s
authentication time and the overall VO size, respectively.
In the following, we simply use the terms query time and
authentication time for short, if it is clear from the context.

Query time. From Figs. 15(a)-(b), we note that the query
time increases significantly with the growth of query size. This
is consistent to the complexity of MCS computation. We also
note that the query time reduces as the fanout increases. For
example, on AIDS, the query time of Q8 at fanout 64 is 41%
of that at fanout 16. This is because that the larger fanout, the
less MCS computation.

Authentication time. Figs. 15(c)-(d) present that the authenti-
cation time is much smaller than the query time. In particular,
on AIDS, the authentication time of Q4 at fanout 16 is about
1/2 of its query time, 1/6 for Q8 and 1/8 for Q12, respectively.
This is mainly for three reasons. (i) Regarding our Enum

method, if the size of the MCS between q and pivot p is
declared to be α, the client only needs to decide whether q
has a subgraph of size α + 1 of p, while in query evaluation
the SP may need to determine all subgraphs of sizes from
α + 1 to |q|. (ii) Regarding our vertex-cover based method,
the client needs not to compute the maximum matchings and
the minimum vertex covers on-the-fly. (iii) Checking mapping
for answer graphs is efficient.

Figs. 15(c)-(d) also present that the authentication time
first reduces slightly and then increases significantly with the
growth of query size. This is because that when the query size
increases, the number of candidate graphs decreases, but each
candidate’s authentication time increases. The slight reduction
from Q4 to Q8 is because that the reduction of candidates
has slightly more impact than the increase of each candidate’s
authentication time. In particular, at fanout 16 on AIDS, the
candidate number reduces about 4K from Q4’s 9K to Q8’s
5K, but each candidate’s authentication time only increases
2.4 µs from 4.8 µs to 7.2 µs. The time is averaged from
1,000 queries. The following notable increase from Q8 to Q12
is because that each candidate’s authentication time increases
much faster than the reduction of the number of candidates.
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Fig. 15. Experiments on query size on AIDS and SYN

In particular, at fanout 16 on AIDS, the number of candidates
decreases only about 20% from Q8’s 5K to Q12’s 4K, but each
candidate’s authentication time significantly increases about 10
times from 7.2 µs to 67 µs.

VO size. Figs. 15(e)-(f) show the total VO size. We observe
that VO size decreases with the growth of query size. It is
because that VO size is dominated by the candidate graphs
and larger queries result in fewer candidate graphs. We also
observe that the VO size increases as the fanout increases, be-
cause that the larger the fanout, the more candidates produced.
It is consistent to the observations of MRTree and MBTree.

8.4 Effectiveness of Optimizations on GMTree

In this experiment, we focus on the AIDS datasets, as other
datasets exhibit similar performance characteristics.
Pivot selection. Figs. 16(a)-(b) present the pivot size deci-
sion and the sample number decision in our pivot selection,
respectively. The fanout of GMTree is 16 and σ is 1, in this
experiment. The x-axis of Fig. 16(a) is pivot sizes; the left y-
axis is the percentage of candidates out of the whole database
and the right y-axis is the query time. Fig. 16(a) shows the
balance between the number of candidates and the query time
on diverse pivot sizes. Note that the query time here is linear
to |J |+|VC|. The reducing line shows that the number of
candidates reduces with the growth of pivot size, whereas
the increasing line indicates that the query time increases.
Fig. 16(a) shows the optimal pivot size is ∼10 that is consistent
to our pivot size decision model in Sec. 7.2. In Fig. 16(b),
the x-axis is sample sizes; and y-axis is the percentage of
candidates out of the whole database. The line in Fig. 16(b)
converges after 10 samples. This means that we only take a
small number of samples to obtain stable performance, which
is consistent to our analysis in Sec. 7.2.
Authenticated MCS computation. To clearly illustrate the
performance of our authenticated MCS computation between q
and pivots, the query time in this experiment does not include
the time to handle candidate graphs, and the VO is just that
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Fig. 16. Performance results of optimizations

caused by pivots. The fanout of GMTree is 16 and σ is 1,
in this experiment. Figs. 16(c)-(d) show the query time and
the VO size of our auth-VC-mcs, respectively. Recall that if
the declared MCS size is larger than β × |q|, we use the Enum

method; otherwise, the VC-mcs method. Fig. 16(c) presents
that the query time first reduces and then increases with the
growth of β. This shows the balance between the Enum and
the VC-mcs: (i) the smaller β, the more Enum is used; and
(ii) the Enum is more efficient for large MCSs, whereas VC-mcs
is better for small MCSs. Fig. 16(d) shows that the VO size
increases with the growth of β. This is because that the VO
needed by the Enum is smaller than that of the VC-mcs.

Figs. 16(e)-(f) show the effectiveness of our auth-VC-mcs.
Fig. 16(e) shows that while taking 12% more query time of
SP , the auth-VC-mcs saves 40% client’s authentication time.
It is desirable in practice as the SP often has an advanced
computation ability, whereas the client does not. Fig. 16(f)
shows that the VO overhead of the auth-VC-mcs is 10K bytes,
which is just 2% of the overall VO.

Remarks. Our experiments reveal the characteristics of
GMTree with respect to its parameters. The SP can easily
offer performance options such as “query time optimized”,
“balanced”, and “network optimized” for data owners/clients
to choose from and build the corresponding indexes offline.

9 CONCLUSION

This paper studies the authenticated subgraph similarity search
in outsourced graph databases. We transform the subgraph
similarity search into a search in a graph metric space and
propose GMTree. Our novelties and technicalities reside in the
authentication techniques. First, candidate graphs determined
by GMTree are often localized. Secondly, we propose a pivot
selection which allows using data subgraphs as pivots. Thirdly,
we propose an authenticated MCS computation to reduce the
computation at clients. Our experiments show that GMTree

is efficient and the VOs are small. In future work, we will
investigate supergraph similarity search.
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APPENDIX A
PROOFS

In this appendix, we present all the proofs skipped in the main
body of this paper.

A.1 Proof of Lemma 4.1

Lemma 4.1: Let q, G1 and G2 denote the query graph and

two data graphs, respectively. Given a similarity threshold t,
if 1− |mcs(G1,G2)|

|G1|
− d(q,G1) > t, then ds(q,G2) > t.

Proof: We conduct the proof through a detailed case
analysis.

Case A: |q| ≥ |G1|. It follows that

1−
|mcs(G1, G2)|

|q|
≥ 1−

|mcs(G1, G2)|

|G1|
(6)

Case A.1: |G2| ≥ |q|.
In this case, G2 has at least one subgraph of size |q|. Let

S = {S1, S2, . . . , Sn} denote all the subgraphs of G2 of
size |q|. There must exist at least one Sm in S, such that
(i) |mcs(q,G2)| = |mcs(q, Sm)|, and (ii) |mcs(q, Sm)| ≥
|mcs(q, Si)| for Si ∈ S.

By (i), ds(q,G2) = d(q, Sm) and by (ii), d(q, Si) ≥
d(q, Sm) for Si ∈ S. We then have the following necessary
and sufficient condition

ds(q,G2) > t ⇔ d(q, Si) > t, for all Si ∈ S (7)

Now our task is to prove d(q, Si) > t for all Si ∈ S.
Since Si is a subgraph of G2, |mcs(G1, G2)| ≥

|mcs(G1, Si)| for all Si ∈ S. Hence, for ∀Si ∈ S,

1−
|mcs(G1, Si)|

|Si|
≥ 1−

|mcs(G1, G2)|

|Si|
(8)

Because of |q| = |Si|, (8) becomes

1−
|mcs(G1, Si)|

|Si|
≥ 1−

|mcs(G1, G2)|

|q|
(9)

Combine (6) and (9) together, we have

1−
|mcs(G1, Si)|

|Si|
≥ 1−

|mcs(G1, G2)|

|G1|
(10)

Since |G1| ≤ |Si|, d(G1, Si) = 1 − |mcs(G1,Si)|
|Si|

, (10)
becomes

d(G1, Si) > 1−
|mcs(G1, G2)|

|G1|

Since 1− |mcs(G1,G2)|
|G1|

−d(q,G1) > t is given in Lemma 4.1,

d(G1, Si) − d(q,G1) > t. Finally, considering d(q, Si) ≥
d(G1, Si) − d(q,G1) by the triangle inequality, we obtain
d(q, Si) > t, for all Si ∈ S.

Case A.2: |G2| < |q|.
In this case, we have ds(q,G2) = d(q,G2), as

max(|q|, |G2|) = |q|. Our task is then to prove d(q,G2) > t.
Case A.2.1: |G1| ≤ |G2| < |q|.
Since d(G1, G2) = 1 − |mcs(G1,G2)|

|G2|
> 1 − |mcs(G1,G2)|

|G1|
,

then d(G1, G2) − d(q,G1) > t by the condition given in
Lemma 4.1. By the triangle inequality, d(q,G2) > t.

TABLE 1
Table of frequently used notations

D graph database U graph metric space
G and g data graph and its

pointer
G∗ augmented graph of

graph G
Tp set of sub-GMTrees of

node with pivot p
Rp set of radii of node

with pivot p
sroot signature of GMTree h() hash function
d graph distance ds subgraph distance
ssig size of a signature srev size of a relevant con-

tent of a node
srad size of a radius value sptr size of a pointer
sh size of a digest sG size of a data graph
q query graph t threshold of query
Cq candidate set of query

(q, t)
Rq answer set of query

(q, t)
c fanout of GMTree

Case A.2.2: |G2| < |G1| < |q|.

In this case, d(G1, G2) = 1 − mcs(G1,G2)
|G1|

. Hence,

d(G1, G2) − d(q,G1) > t by the condition given in
Lemma 4.1. By the triangle inequality, d(q,G2) > t.

Case B: |q| < |G1|.

Case B.1: |G2| ≥ |q|.

Let S = {S1, S2, . . . , Sn} denote the set of subgraphs of
G2 of the size q. The necessary and sufficient condition (7)
still applies. Our task is to prove d(q, Si) > t for all Si ∈ S.

Since Si is a subgraph of G2, |mcs(G1, G2)| ≥
|mcs(G1, Si)|. Then, for all Si ∈ S,

1−
|mcs(G1, G2)|

|G1|
≤ 1−

|mcs(G1, Si)|

|G1|
= d(G1, Si)

Since 1− |mcs(G1,G2)|
|G1|

−d(q,G1) > t is given in Lemma 4.1,

d(G1, Si)− d(q,G1) > t for all Si ∈ S. Thus, by the triangle
inequality, d(q, Si) > t for all Si ∈ S.

Case B.2: |G2| < |q|.

In this case, ds(q,G2) = d(q,G2). Since |G1| > |G2|,
d(G1, G2) = 1− |mcs(G1,G2|)

|G1|
. Thus, d(G1, G2)−d(q,G1) > t

by the condition given in Lemma 4.1. By the triangle inequal-
ity, d(q,G2) > t.

A.2 Proof of Theorem 4.2

Theorem 4.2: Given a query q, an augmented graph G∗
1 and

a graph G2, if d(G∗
1, G2)− d(q,G∗

1) > t, then ds(q,G2) > t.

Proof: We recall the definition of augmented graph Def-
inition 4.1 as follows.

An augmented graph G∗
1 with respect to G2 is defined as

follows:

• G∗
1 = G1 if |G1| ≥ |G2|;

• Otherwise, G∗
1 = G1 ∪ A, where A is an augmented

subgraph having nodes and edges with labels never
occurred in G2 and possible queries, until |G∗

1| = |G2|.

We conduct the proof by applying Lemma 4.1 and Defini-
tion 3.1 as follows.
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d(G∗
1, G2)− d(q,G∗

1) > t

⇒ 1−
|mcs(G∗

1, G2)|

max{|G∗
1|, |G2|}

− d(q,G∗
1) > t

by Definition 3.1

⇒ 1−
|mcs(G∗

1, G2)|

|G∗
1|

− d(q,G∗
1) > t

as |G∗
1| ≥ |G2|

⇒ ds(q,G2) > t

by Lemma 4.1

A.3 Calculation of Hb in Sec. 6.4

We first present the formula for the size of Hb and the
number of candidate graphs of GMTree. Then, we plug in some
numbers to construct an example presented in Sec. 6.4.

Proposition A.3: Given a GMTree T with a fanout c indexing a
graph database D, if each node in T has a fraction k ∈ (0, 1)
of sub-GMTrees visited, the number of candidate graphs is

|D|× klogc |D|−1

and the number of digests needed in Hb is

(1− k)c× [1− (kc)logc |D|−1]

1− kc
.

Proof: Since GMTree T is a complete tree, T has |D|/c
leaves and T ’s height h = logc |D|.
Regarding the number of candidate graphs: Since each node
of T has a fraction k of subtrees visited, the total number of
leaf nodes visited is (kc)h−1. Since each leaf node contains c
data graphs, the number of candidate graphs is ch × kh−1 =
|D|× klogc |D|−1.
Regarding the number of digests in Hb: Since each node of
T has a fraction k of subtrees visited, each node has (1− k)c
subtrees pruned. Therefore, T ’s i-th level has (1−k)c×(kc)i−1

subtrees pruned for 1 ≤ i ≤ h − 1. Since we need a digests
for each pruned subtree in Hb, the total number of digests in

Hb is ×
∑h−1

i=1 (1 − k)c × (kc)i−1 = (1−k)c×[1−(kc)logc |D|−1]
1−kc

Now we are ready to plug in some numbers to construct
the example presented in Sec. 6.4. If k = 3/4, c = 8, |D| =
10000, the number of candidate graphs is about 3700 and
GMTree needs 186 digests in Hb to authenticate the presence
of all the candidate graphs. In comparison, if the candidate
graphs and non-candidate graphs are stored alternately, each
candidate graph needs a digest and hence 3700 digests are
needed in the worst case. Therefore, GMTree just needs 5%
digests of the worst case.

A.4 Proof of Cost Model of VO Size in Sec. 6.4

Let ssig , srev , srad, sptr, sh and sG denote the sizes of
a signature, a relevant content of a node, a radius value, a
pointer, a digest and a data graph, respectively. Let Vvisited

denote the set of visited nodes of GMTree. Please refer to
Tbl. 1 for the frequently used notations.

tv visited
subtrees of root

c− tv pruned
subtrees of root

. . . . . .

. . . .

root

. . . .

.

.

.

. . . .

v

tv visited
leaves of v

c− tv pruned
leaves of v

. . .

. . . . . . . .

Fig. 17. Illustration for VO Size Analysis

Proposition A.4: The overall VO size of a query (q, t) on a
GMTree T of a fanout c is:

|VO| =
∑

v is visited
v is internal

(

srev + (c− 1)srad
)

+
∑

v is visited

sptr − sptr //Hv for internal

+ 2sh
(

∑

v is visited
v is internal

c− (|Vvisited|− 1)
)

//Hb

+
∑

v is visited
v is leaf

(

(c+ 1)sh + c sptr
)

//Hv for leaf

+
∑

v is visited
v is leaf

c(sh + sG + si) //M and N

+ ssig //sroot

Proof: Procedure auth similarity performs a traver-
sal on T and constructs VO simultaneously by Defini-
tion 6.3. During traversal, when auth similarity visits
a node v (e.g., grey circles and rectangles in Fig. 17),
auth similarity adds several terms to verify v in VO.
Specifically,

(i) if v is an internal node (e.g., the grey circles in Fig. 17),

– auth similarity adds srev bytes in Hv for the
relevant content of v (For simplicity of analysis, we
do not consider the hints that optimize MCS verification,
which affects the analysis in a non-trivial manner);

– Suppose tv subtrees of v are not pruned in Lines 11-13
of Fig. 7 (e.g., the grey children of root in Fig. 17).
auth similarity adds tv×sptr bytes for the subtree
not pruned to Hv;

– auth similarity adds (c − 1) × srad bytes for the
radii to Hv . (Since the first radius is always zero, we
do not add it to VO for saving);

– auth similarity also adds 2(c− tv)× sh bytes for
the pruned subtrees (e.g., the white children of root in
Fig. 17), one sh for the digest of each pruned subtrees
and one sh for the digests of each radius to Hb.

(ii) Otherwise, v is a leaf (e.g., the grey rectangles in Fig. 17),

– auth similarity adds (1+c)×sh+c×sptr bytes to
Hv , including h(v), c pointers and c digest of pointers;

– auth similarity also adds c× sG + c× sh + c× si
bytes to M and N for the answers, non-answers and
their digests. (Note that the MCS mappings m in M is
not included for analysis simplicity as m’s size is at
most sG bytes.)
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At the end of the traversal, ssig bytes for sroot are added
to VO.

In all, the size of VO is

|VO| =
∑

v is visited
v is internal

[

srev + tvsptr + (c− 1)srad
]

//Hv for internal

+
∑

v is visited
v is internal

[

2(c− tv)sh
]

//Hb

+
∑

v is visited
v is leaf

[

(c+ 1)sh + csptr
]

//Hv for leaf

+
∑

v is visited
v is leaf

[

csG + csh + csi
]

//M and N

+ ssig //sroot
(11)

Since tv is the number of visited children of v, hence
∑

v is visited
v is internal

tv counts the number of nodes visited in traversal

excluding the root. That is
∑

v is visited
v is internal

tv = |Vvisited|− 1

Therefore, Formula (11) becomes

|VO| =
∑

v is visited
v is internal

(

srev + (c− 1)srad
)

+
∑

v is visited

sptr − sptr //Hv for internal

+ 2sh
(

∑

v is visited
v is internal

c− (|Vvisited|− 1)
)

//Hb

+
∑

v is visited
v is leaf

(

(c+ 1)sh + c sptr
)

//Hv for leaf

+
∑

v is visited
v is leaf

c(sh + sG + si) //M and N

+ ssig //sroot

A.5 Proof of Formula (4) in Sec. 7.2

Proposition A.5: Suppose â, a and b are the sample
minimum, population minimum and population maximum,
respectively. Suppose further the graph distance between any
two graphs is uniformly distributed in [a, b]. Let s denote the
sample size and ϵ bound the error of â from a. Then, for any
0 < ϵ < b− a, we have

Pr(â− a ≤ ϵ) ≥ 1− (1− ϵ)s.

Proof: Since the graph distance d between any two graphs
is uniformly distributed in [a, b], let p(d) denote the probability
density function of d, we have

p(d) =

{ 1
b−a if x ∈ (a, b)

0 otherwise

Because we randomly choose s samples, the sample mini-
mum â is also a random variable. Let Pr(â = ω) denote the
probability of ω is the sample minimum. The probability of
â = ω equals to

Pr(â = ω) = s×
[

1− Pr(d < ω)
]s−1

× p(ω), (12)

where
[

1 − Pr(d < ω)
]s−1

means s − 1 samples are larger
than ω and the coefficient s means ω can occur at any sample.

Since â is the sample minimum, a ≤ â ≤ b and random
variable â− a measures the error of â from a. Since 0 ≤ a ≤
b ≤ 1, the error â− a ≤ b− a ≤ 1.

Given ϵ ∈ (0, b− a) as a bound of error, the probability of
â− a is bounded by ϵ equals to

Pr(â < a+ ϵ) =

∫ a+ϵ

0
Pr(â = z)dz

=

∫ a+ϵ

a

Pr(â = z)dz
(13)

Integrating Equation (12), Equation (13) becomes
∫ a+ϵ

a

s
[

1− Pr(d < z)
]s−1

p(z)dz

=

∫ a+ϵ

a

s
[

1−
z − a

b− a

]s−1 1

b− a
dz

=

∫ a+ϵ

a

s(
1

b− a
)s(b− z)s−1dz

= (
1

b− a
)s

∫ a+ϵ

a

s(b− z)s−1dz

= −(
1

b− a
)s

∫ a+ϵ

a

s(b− z)s−1d(b− z)

= −(
1

b− a
)s(b− z)s

∣

∣

a+ϵ

a

= −(
1

b− a
)s
[

(b− a− ϵ)s − (b− a)s
]

= 1− (1−
ϵ

b− a
)s

because 0 < b− a < 1, ϵ > 0

> 1− (1− ϵ)s

A.6 Proof of Soundness and Completeness of Pro-
cedure auth

Theorem A.6: Procedure auth is sound and complete.

Proof: (Proof of soundness) Assume that a graph in the
query result in VO is modified or bogus. Since the hash
function is assumed to be one-way, the correct hash of the
leaf node (Lines 06,15 of auth aux) cannot be synthesized.
Hence, hroot will not agree with the signature sroot provided
by the DO, and the malicious modification is detected by the
client (Line 02 of auth).

Given the graphs returned by the SP are not modified,
Lines 09-14 of auth aux guarantee the soundness of the
answers.

(Proof of completeness) Let G is an answer of Q but not
included M . Suppose vG is the leaf node containing G. Either
the content of vG or the hash containing vG is stored in VO.
In the former case, G will be extracted from N in Line 05
of auth aux and detected in Lines 12-14 of auth aux. In
the latter case, since vG contains G, vG must overlap with
the query q. By applying the similar argument, one of the
ancestors of vG or vG itself overlaps with q, but it is wrongly
included in the VO.Hb by the SP . Then, there are only two
possible cases. Firstly, the number of pruned subtrees (i.e., tv)
determined by the pruning condition in Line 22 of auth aux

will not match the number of digests in Hb (Lines 25-27 of
auth aux). Secondly, the radius list has been forged, which
makes Line 22 of auth aux passes. In either case, the digest
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cannot be synthesized. The missing result will be detected by
Line 02 of auth.

A.7 Proof of Correctness of auth-VC-mcs

Theorem A.7: auth-VC-mcs is correct.

Proof: Foremost, we assume the correctness of VC-mcs
[20]. From the procedure of the client’s authentication, we
note that the client reads the following from VO: the graph
p, the maximal independent sets mis(p) of p to construct
the bigraphs, the maximum matchings JM ’s and minimum
vertex covers V CM ’s of the bigraphs and the signatures. Other
structures used in the authentication process are constructed
by the client himself. Since the signatures cannot be tampered
with, we can prove the correctness of auth-VC-mcs by proving
the correctness of p, mis(p) and JM and V CM , respectively.

Case A. If p is tampered with. The synthesized digest of
the root of GMTree will not agree with the signature sroot in
VO as detected in Procedure auth in Sec. 6.

Case B. If the mis(p) of p is tampered with. The client can
easily detect it by using mis(p)’s signature recorded in VO
and DO’s public key.

Case C. If the maximum matching JM or the minimum
vertex cover of a bigraph B(p,q,M) is tampered with. The
client can easily detect it by checking whether |JM | = |V CM |
since we have a theorem in graph theories that the size of the
maximum matching of a bigraph B equals to the size of the
minimum vertex cover of B.

We have proved the correctness of q, mis(q) and JM s and
V CM s in VO, and hence the correctness of auth-VC-mcs is
proved.

A.8 Proof of NP-hardness of the Pivot Selection
Problem

Theorem A.8: The Pivot Selection Problem is NP-hard.

Proof: Let us recall the definition of the pivot selection
problem as follows.

Given a set of graphs D = {G1, G2, . . . , Gm} and the set
of subgraphs S = {S|S ⊂ G,G ∈ D}, select one graph p as
pivot from D ∪ S to minimize the cost function

X = max
i=1...m

{d(p∗, Gi)},

where p∗ is the augmented pivot constructed from p as
discussed in Sec. 4.

We first prove that the simplest case of the pivot selection
problem (i.e., when m = 2) is NP-hard. Then, the general
pivot selection problem is readily NP-hard.

When m = 2, D = {G1, G2} and S = {S|S ⊂ G1 ∨ S ⊂
G2}. We have (i) the graph p = mcs(G1, G2) is an optimum
pivot and (ii) all other optimum pivots are supergraphs of
mcs(G1, G2). We prove (i) and (ii) separately as follows.

(i) p = mcs(G1, G2) is an optimum pivot

We prove it by contradiction. Suppose there is another graph
p′ ∈ D ∪ S which is better than p, i.e.,

max{1− |mcs(p,G1)|
max{|p∗|,|G1|}

, 1− |mcs(p,G2)|
max{|p∗|,|G2|}

}

> max{1− |mcs(p′,G1)|
max{|p′∗|,|G1|}

, 1− |mcs(p′,G2)|
max{|p′∗|,|G2|}

}
(14)

Since |p∗| = |p′∗| = max{|G1|, |G2|} by Definition 4.1,
(14) becomes

max{1− |mcs(p,G1)|, 1− |mcs(p,G2)|}

> max{1− |mcs(p′, G1)|, 1− |mcs(p′, G2)|}

⇔ min{|mcs(p,G1)|, |mcs(p,G2)|}

< min{|mcs(p′, G1)|, |mcs(p′, G2)|}

(15)

Since p = mcs(G1, G2), (15) becomes

|mcs(G1, G2)| < min{|mcs(p′, G1)|, |mcs(p′, G2)|} (16)

However, (16) is impossible. The reason is that p′ can only
be G1, G2 or their subgraphs, which are analyzed one-by-one
as follows.

Case A: If p′ = G1, min{|mcs(p′, G1)|, |mcs(p′, G2)|} =
|mcs(G1, G2)|

Case B: If p′ = G2, similar to Case A.
Case C: If p′ is a subgraph of G1, |mcs(p′, G1)| ≥

|mcs(p′, G2)| and |mcs(p′, G2)| ≤ |mcs(G1, G2)| Hence,
|mcs(G1, G2)| ≥ min{|mcs(p′, G1)|, |mcs(p′, G2)|}.

Case D: If p′ is a subgraph of G2, similar to Case C.
We have found a contradiction and hence p = mcs(G1, G2)

is an optimum pivot.

(ii) all other optimum pivots are supergraphs of mcs(G1, G2)

We also prove it by contradiction. Suppose there is an opti-
mum pivot p′′ ∈ D∪S that does not contain p = mcs(G1, G2).
Then, we have the following.

|mcs(G1, G2)| > min{|mcs(p′′, G1)|, |mcs(p′′, G2)|}

⇔ max{1− |mcs(p,G1)|, 1− |mcs(p,G2)|}

< max{1− |mcs(p′′, G1)|, 1− |mcs(p′′, G2)|}

by Definition 4.1 |p∗| = |p′′∗| = max{|G1|, |G2|}

⇔ max{1− |mcs(p,G1)|
max{|p∗|,|G1|}

, 1− |mcs(p,G2)|
max{|p∗|,|G2|}

}

< max{1− |mcs(p′′,G1)|
max{|p′′∗|,|G1|}

, 1− |mcs(p′′,G2)|
max{|p′′∗|,|G2|}

}

by Definition 3.1 and mcs(p,Gi) = mcs(p∗, Gi)

⇔ max{d(p∗, G1), d(p∗, G2)} < max{d(p′′∗, G1), d(p′′∗, G2)}

This means p′′ is not an optimum pivot as it is worse
than p. It is a contradiction and all optimum pivots contain
mcs(G1, G2).

Therefore, finding the optimum pivot for m = 2 is equiva-
lent to compute the MCS between G1 and G2. Since the MCS

computation is NP-hard, the pivot selection problem when
m = 2 is NP-hard. Consequently, the general pivot selection
problem is NP-hard.

A.9 Time Complexity Analysis of GMTree construc-
tion

Proposition A.9: The time complexity of GMTree construction
with the sampling-base pivot selection is

O((logc |D|− 1)× s× |G|× dist× |D|),
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Procedure similarity
Input: db D, GMtree T rooted at v and query Q = (q, t)
Output: Query result RS
01 denote the pivot of v as p
02 if v is a leaf
03 for each G ∈ v

04 if 1− |mcs(p,G)|
|p| − d(q, p) ≤ t //Lemma 4.1

05 if ds(q,G) ≤ t then RS = RS ∪ G
06 return RS

07 d = d(q, p∗) = 1− |mcs(q,p)|
max(|p∗|,|q|) //mcs(q, p) = mcs(q, p∗)

08 for each i in [0,. . ., c− 1]
09 if rip − d ≤ t //Theorem 4.2

10 RS = RS ∪ similarity(D,T i
p,Q)

11 else break

12 return RS

Fig. 18. Procedure similarity

where dist = O(3|G
′|/3|G′|2.5(|G′| + 1)|V CG|) is the time

complexity of VC-mcs in Sec. 7.1.1.

Proof: Consider the i-th level of GMTree, for any internal
node v, we need to perform the pivot selection. We need
O(|G|) time to sample a pivot and O(dist × |Dv|) time to
compute the distance between the pivot with all data graphs
covered by v, denoted as Dv . We need s samples and hence
O(s× |G|× dist×Dv) time for node v.

Since the internal nodes of the i-th level of GMTree together
covers all data graphs in D, i.e.,

∑

v |Dv| = |D|, all internal
nodes of the i-th level need O(s × |G| × dist ×

∑

v |D|) =
O(s× |G|× dist× |D|);

Since the height of GMTree is O(logc |D|), the total time
complexity is O((logc |D|− 1)× s× |G|× dist× |D|) as the
leaf nodes do not need pivot selection.

APPENDIX B
SUBGRAPH SIMILARITY SEARCH ON GMTree

In this appendix, we present the details of the algorithm of
subgraph similarity search on GMTree.

In a nutshell, given a query Q = (q, t), where q is the query
graph and t is its radius, the search algorithm is incorporating
the pruning of Theorem 4.2 into a depth-first traversal on
GMTree.

Procedure similarity presents the details of search al-
gorithm as shown in Fig. 18. The inputs are a database D,
the GMTree index T and query Q = (q, t). The output is the
query result RS = {G | ds(q,G) ≤ t, G ∈ D}. Procedure
similarity traverses the GMTree index and filters out sub-
spaces that certainly do not contain answers (Lines 08-11 by
using the pruning condition of Theorem 4.2). The subtrees
indexing the remaining subspaces may contain answers and
they are traversed (Line 10). When a leaf node is reached, the
graphs that cannot been filtered by Lemma 4.1 are candidates
(Line 04) and checked individually whether they are in fact
answers (Line 05).

APPENDIX C
QUERY WORKLOAD IN EXPERIMENTS

Regarding AIDS, our query workload was modified from
the benchmark queries Q4, Q8 and Q12 used in [1]. Our
modifications were two. (1) Qm, m = 4, 8, 12 means that the

TABLE 2
Characteristics of datasets

#
graphs

# avg.
nodes

# avg.
edges

avg.
dens.

# v.
labels

# e.
labels

AIDS 10K 25.4 27.4 0.104 51 4
SYN 10K 12.9 50.4 0.65 5 5
PUBCHEM 10K 18.8 19.6 0.165 23 3

query graph has m vertices (versus m edges in [1]), since our
subgraph distance is defined based on the number of graph
vertices. (2) Qm is a mixture of queries of diverse densities.
To obtain a query of a certain density, we randomly selected
a query in Qm and added or removed vertices randomly
until it satisfied the requirement. Each Qm contains 1,000
query graphs. Regarding SYN, we used the method of [50]
to obtain a set of queries. For example, for Q12, we first
randomly selected 1,000 graphs whose sizes were larger than
12 from SYN. Then, for each graph, we randomly removed
vertices from it until its size was 12 and applied the same
modifications as AIDS. Following [2], the possible numbers of
missing vertices σ of q are 1, 2 and 3.

APPENDIX D
ADDITIONAL EXPERIMENTS

In this appendix, we first present the experimental results on
the PUBCHEM dataset. The results on PUBCHEM are similar
to those on AIDS and SYN. We then present the performances
of GMTree using data graphs as pivots on AIDS. We finally
present the experimental results on σ on AIDS and SYN.

D.1 Experiments on PUBCHEM

Experimental settings. The experiments on PUBCHEM were
conducted with the same settings of the experiments on AIDS

and SYN in Sec. 8.
PUBCHEM dataset. We followed the method of [50] to sample
10,000 graphs as our test dataset PUBCHEM from the PubChem
chemical structure database [10].
Query workload. The same method to obtain the queries on
SYN was applied on PUBCHEM to obtain 1,000 queries. The
possible numbers of missing vertices σ of q was also set to 1,
2 and 3.
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Fig. 19. Comparison of GMTree with Grafil∗ and the base-
line method in terms of VO size and time on PUBCHEM

Similar to the experiments on AIDS and SYN, we present
the results of our experiments on PUBCHEM in terms of the



20

comparison with the baseline and Grafil∗, the experiments on
query size and the experiments on σ.

D.1.1 Comparison with the baseline and Grafil∗

Comparison of VO size. Figs. 19(a)-(b) present the sizes of
the VOindex and the VOcand, respectively. From Fig. 19(a),
we note that the VOindex of our GMTree is only 30% of Grafil∗

and smaller than 50% of the baseline. From Fig. 19(b), we
note that GMTree produces slightly more VOcand than Grafil∗.
However, GMTree produces smaller number of large candidate
graphs than Grafil∗, which would affect the authentication ef-
ficiency significantly. Fig. 19(b) also presents that our GMTree
produces smaller VOcand than the baseline.

Comparison of time. Figs. 19(c)-(d) present the SP’s query
time and the client’s authentication time, respectively. From
Fig. 19(c), we note that the GMTree’s query at the SP is 3
times slower on average than Grafil∗. However, the client’s
authentication time is usually the bottleneck and the GMTree’s
authentication is 6 times faster (on average) than Grafil∗ as
shown in Fig. 19(d). From Figs. 19(c)-(d), we also note that
the SP’s query time and the client’s authentication time of the
GMTree are 30% and 60% smaller than those of the baseline,
respectively.

D.1.2 Experiments on query size

Query time. Fig. 20(a) presents the SP’s query time versus
the query size. From Fig. 20(a), we note that the SP’s query
time increases significantly with the growth of the query size.
It is consistent to the complexity of computing MCS. From
Fig. 20(a), we also note that the query time reduces as the
fanout increases. It is because that the larger the fanout, the
less the distance computation involved in query processing.

Authentication time. Fig. 20(b) presents the client’s authen-
tication time. Fig. 20(b) presents that the client’s authen-
tication time is much smaller than the query time at the
SP . In particular, the authentication of Q12 at fanout 16
is 3 times faster than query. From Fig. 20(b), we also note
that the client’s authentication time increases as the query
size increases. It is because that the MCS computation in the
client’s authentication for larger queries takes longer. Since the
number of distance computation reduces with the growth of
the fanout (as discussed in the query time above), the client’s
authentication time reduces with the growth of the fanout as
shown in Fig. 20(b).

Overall VO size. Fig. 20(c) presents the overall VO size.
We observe that the overall VO size reduces with the growth
of the query size. It is because that larger queries produced
fewer candidate graphs, which dominate the VO. We also note
that the VO size increases with the growth of fanout. It is
consistent with the observations of MRTree and MBTree.

D.1.3 Experiments on σ

Query time. Fig. 20(d) presents the SP’s query time. From
Fig. 20(d), we note that the SP’s query time increases as σ
increased. It is because that the larger query range, the more
data graphs needed to be tested. We also note that the query
time reduces as the fanout increases. It is because that the
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Fig. 20. Experiments on query size and σ on PUBCHEM

lager fanout, the fewer pivots needed to be accessed in GMTree

traversal.

Authentication time. Fig. 20(e) presents the client’s authen-
tication time. From Fig. 20(e), we observe that the client’s
authentication time increases with the growth of σ. It is
because that the larger query range, the more candidate graphs
needed to be authenticated. We also note that the client’s
authentication time reduces as σ increases. It is because that
the number of pivots involved in the client’s authentication
reduces with the growth of fanout.

VOindex size. Fig. 20(f) presents the VOindex size of GMTree.
Fig. 20(f) shows that the VOindex increases with the growth
of σ. It is because that the number of accessed internal nodes
increases as σ increases. Fig. 20(f) also presents that the
VOindex size increases as the fanout increases. It is because
that the number of pruned subtrees increases as the fanout
increases. However, the VOindex is well controlled within 30K
bytes.

D.2 Additional Experiments on Using Data Graph as
Pivots on AIDS

This experiment used the same settings on AIDS as presented
in Sec. 8. GMTree by default allows to use subgraphs as pivots
as detailed in Sec. 7.2. In this experiment, we construct a
specific GMTree that uses the data graph as pivots. The fanout
of the GMTree is 16. Figs. 21(a)-(b) present the comparison
of the query time and the total VO size, respectively. From
Fig. 21(a), we observe that the query time of our method is
smaller than 20% of using data graph as pivots. Moreover, the
VO sizes of our method are 52%, 56% and 72% of using data
graph as pivots at σ = 1, 2 and 3, respectively, as shown in
Fig. 21(b). This experiment verifies the effectiveness of using
subgraphs as pivots.
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Fig. 22. Effects of σ on AIDS and SYN

D.3 Additional Experiments on σ on AIDS and SYN

This experiment used the same settings as presented in Sec. 8.
Similar to the experiments in Sec. 8, this experiment presents
the performances of GMTree in terms of the query time, the
authentication time and the VO size, respectively. We use AIDS

and SYN and we focus on Q8 in this experiment, since other
two query sets exhibit similar performance characteristics.

Query time. Figs. 22(a)-(b) present the query time on AIDS

and SYN, respectively. From Figs. 22(a)-(b), we observe that
the query time increases as σ increases. It is because that the
larger σ, the more candidate graphs produced. We note from
Fig. 22(a) that the query time of σ = 3 is slightly smaller than
that of σ = 2. It is because that (i) for σ = 2 and 3, AIDS’s
answer graphs account for most of candidate graphs, i.e., 74%
and 69% for σ = 2 and 3 at the fanout 16, respectively. (ii)
Answer graphs of σ = 2 are all answers of σ = 3. (iii) If
a graph is an answer of σ = 2 or 3, our Enum method can
detect it for σ = 3 with a lower time cost than σ = 2, because
that a smaller number of subgraphs need to be determined.
Figs. 22(a)-(b) also present that the query time reduces as the
fanout increases. It is because that the larger fanout, the fewer
pivots accessed in traversal. SYN’s time reduction is slight as
shown in Fig. 22(b), because that graphs in SYN are dense and
their MCS computation dominates the query time.

Authentication time. Figs. 22(c)-(d) present the authentica-

tion time on AIDS and SYN, respectively. From Figs. 22(c)-
(d), we observe that the authentication time increases with the
growth of σ. It is because that the larger σ, the more candidate
graphs needed to be verified. Because of the large percentage
of answer graphs in the candidate set (see discussion in query
time above), σ = 3 of AIDS takes shorter authentication time
than σ = 2 as shown in Fig. 22(c). Figs. 22(c)-(d) also
show that the authentication time reduces with the growth of
fanout. It is because that the number of pivots involved in
authentication reduces as the fanout increases.

VOindex size. Figs. 22(e)-(f) present the size of VOindex on
AIDS and SYN, respectively. Recall that the VOindex mainly
contains two parts: (i) the relevant content, MCS and hints of
accessed internal nodes and (ii) the digests of pruned subtrees.
Figs. 22(e)-(f) present that the VOindex increases with the
growth of σ. It is because that the number of accessed internal
nodes increases as σ increases. Figs. 22(e)-(f) also present that
the VOindex increases as the fanout increases. It is because
that the number of pruned subtrees increases as the fanout
increases. However, the VOindex is well controlled within 30K
bytes. Fig. 22(f) presents that the VOindex reduces slightly
from σ = 2 to 3 on SYN. It is because that the number of
pruned subtrees reduces more significantly than the increase
of accessed node number. In particular, the number of pruned
subtrees reduces 16% from σ = 2 to 3, but the number of
accessed node increases only 1% at fanout 16.


